Abstract
We illustrate a family of risk measures called GlueVaR that combine Value-at-Risk and Tail Value-at-Risk at different tolerance levels and have analytical closed-form expressions for the most frequently used distribution functions in financial and insurance applications, i.e. Normal, Log-normal, Student t and Generalized Pareto distributions. Tail-subadditivity is a remarkable property of a subfamily of GlueVaR risk measures. An implementation to the analysis of risk in an insurance portfolio is investigated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Acerbi, C., Tasche, D.: On the coherence of expected shortfall. Journal of Banking & Finance 26(7), 1487–1503 (2002)
Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Mathematical Finance 9(3), 203–228 (1999)
Balbás, A., Garrido, J., Mayoral, S.: Properties of distortion risk measures. Methodology and Computing in Applied Probability 11(3, SI), 385–399 (2009)
Belles-Sampera, J., Guillén, M., Santolino, M.: Beyond Value-at-Risk: GlueVaR Distortion Risk Meaures. IREA Working Papers 201302, University of Barcelona, Research Institute of Applied Economics (2013)
Belles-Sampera, J., Merigó, J.M., Guillén, M., Santolino, M.: The connection between distortion risk measures and ordered weighted averaging operators. Insurance, Mathematics & Economics (2013), dx.doi.org/10.1016/j.insmatheco.2013.02.008
Bolancé, C., Guillén, M., Pelican, E., Vernic, R.: Skewed bivariate models and nonparametric estimation for the CTE risk measure. Insurance: Mathematics and Economics 43(3), 386–393 (2008)
Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L.: Risk measures: Rationality and diversification. Mathematical Finance 21(4), 743–774 (2011)
Chen, D., Mao, T., Pan, X., Hu, T.: Extreme value behavior of aggregate dependent risks. Insurance: Mathematics and Economics 50(1), 99–108 (2012)
Choquet, G.: Theory of Capacities. Annales de l’Institute Fourier 5, 131–295 (1954)
Danielsson, J., Jorgensen, B.J., Sarma, M., de Vries, C.G.: Sub-additivity re-examined: the case for Value-at-Risk. Tech. Rep., CiteSeerx (2005)
Degen, M., Lambrigger, D.D., Segers, J.: Risk concentration and diversification: Second-order properties. Insurance: Mathematics and Economics 46(3), 541–546 (2010)
Denneberg, D.: Non-Additive Measure and Integral. Kluwer Academic Publishers, Dordrecht (1994)
Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R.: Actuarial Theory for Dependent Risks. Measures, Orders and Models. John Wiley & Sons Ltd., Chichester (2005)
Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R., Laeven, R.: Risk measurement with equivalent utility principles. Statistics & Decisions 24(1), 1–25 (2006)
Dhaene, J., Laeven, R.J.A., Vanduffel, S., Darkiewicz, G., Goovaerts, M.J.: Can a coherent risk measure be too subadditive? Journal of Risk and Insurance 75(2), 365–386 (2008)
Ekeland, I., Galichon, A., Henry, M.: Comonotonic measures of multivariate risks. Mathematical Finance 22(1), 109–132 (2012)
Embrechts, P., Lambrigger, D.D., Wuethrich, M.V.: Multivariate extremes and the aggregation of dependent risks: examples and counter-examples. Extremes 12(2), 107–127 (2009)
Embrechts, P., Neslehova, J., Wuethrich, M.V.: Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness. Insurance: Mathematics and Economics 44(2, SI), 164–169 (2009)
Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance and Stochastics 6(4), 429–447 (2002)
Frittelli, M., Rosazza Gianin, E.: Putting order in risk measures. Journal of Banking & Finance 26(7), 1473–1486 (2002)
Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation functions: Construction methods, conjunctive, disjunctive and mixed classes. Information Sciences 181(1), 23–43 (2011)
Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation functions: Means. Information Sciences 181(1), 1–22 (2011)
Guillén, M., Prieto, F., Sarabia, J.M.: Modelling losses and locating the tail with the Pareto Positive Stable distribution. Insurance: Mathematics and Economics 49(3), 454–461 (2011)
Hosking, J., Wallis, J.: Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29(3), 339–349 (1987)
Hua, L., Joe, H.: Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures. Insurance: Mathematics and Economics 51(2), 492–503 (2012)
Jiang, L.: Convexity, translation invariance and subadditivity for g-expectations and related risk measures. Annals of Applied Probability 18(1), 245–258 (2008)
McNeil, A.J., Frey, R., Embrechts, P.: Quantitative Risk Management. Princeton Series in Finance. Princeton University Press, New York (2005)
Nam, H.S., Tang, Q., Yang, F.: Characterization of upper comonotonicity via tail convex order. Insurance: Mathematics and Economics 48(3), 368–373 (2011)
Song, Y., Yan, J.-A.: Risk measures with comonotonic subadditivity or convexity and respecting stochastic orders. Insurance: Mathematics and Economics 45(3), 459–465 (2009)
Szëgo, G.: Measures of risk. Journal of Banking and Finance 26(7), 1253–1272 (2002)
Wang, S.S.: Insurance pricing and increased limits ratemaking by proportional hazard transforms. Insurance: Mathematics and Economics 17(1), 43–54 (1995)
Wang, S.S.: Premium calculation by transforming the layer premium density. ASTIN Bulletin 26(1), 71–92 (1996)
Wang, S.S.: An actuarial index of the right-tail risk. North American Actuarial Journal 2(2), 88–101 (1998)
Wang, S.S., Dhaene, J.: Comonotonicity, correlation order and premium principles. Insurance: Mathematics and Economics 22(3), 235–242 (1998)
Wirch, J.L., Hardy, M.R.: Distortion risk measures: Coherence and stochastic dominance. In: IME Conference, Lisbon (2002)
Yaari, M.E.: The dual theory of choice under risk. Econometrica 55(1), 95–115 (1987)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Belles-Sampera, J., Guillén, M., Santolino, M. (2013). Generalizing Some Usual Risk Measures in Financial and Insurance Applications. In: Fernández-Izquierdo, M.Á., Muñoz-Torres, M.J., León, R. (eds) Modeling and Simulation in Engineering, Economics, and Management. MS 2013. Lecture Notes in Business Information Processing, vol 145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38279-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-38279-6_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38278-9
Online ISBN: 978-3-642-38279-6
eBook Packages: Computer ScienceComputer Science (R0)