Skip to main content

Additive-Increase Multiplicative-Decrease MAC Protocol with Multi-Packet Reception

  • Conference paper
Wired/Wireless Internet Communication (WWIC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 7889))

Included in the following conference series:

Abstract

A distributed medium-access control (MAC) protocol for the time-slotted channel with multi-packet reception (MPR) capability is proposed. In contrast to the commonly assumed collision channel, in the MPR channel with channel capacity K, it is possible to decode up to K packets whose transmissions overlap in time. In order to exploit the MPR capability, the additive-increase multiplicative-decrease MAC (AIMD-MAC) protocol is designed to adaptively adjust the access probabilities of the independent nodes based on their local transmission histories. The examined performance metrics for evaluating this protocol include aggregate throughput, average packet delay and system fairness. Extensive simulations show that the performance of AIMD-MAC is superior to that of S-Aloha* under light traffic loads and achieves the optimum level after the system is saturated. With a suitable parameter set, AIMD-MAC can be adequately applied in a dynamic wireless environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bertsekas, D., Gallager, R.: Data networks, 2nd edn. Prentice-Hall, Inc., Upper Saddle River (1992)

    MATH  Google Scholar 

  2. Celik, G.D., Zussman, G., Khan, W.F., Modiano, E.: Mac for networks with multipacket reception capability and spatially distributed nodes. Mobile Computing 9(2), 226–240 (2010)

    Article  Google Scholar 

  3. Chan, D.S., Berger, T.: Performance and cross-layer design of csma for wireless networks with multipacket reception. In: Proc. IEEE Asilomar, vol. 2, pp. 1917–1921 (November 2004)

    Google Scholar 

  4. Chiu, D., Jain, R.: Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Comput. Netw. ISDN Syst. (June 1989)

    Google Scholar 

  5. Cleary, A.C., Paterakis, M.: An investigation of reservation random access algorithms for voice-data integration in microcellular wireless environments. In: IEEE Globecom (November 1994)

    Google Scholar 

  6. Ghanbarinejad, M., Schlegel, C., Gburzynski, P.: Adaptive probabilistic medium access in mpr-capable ad-hoc wireless networks. In: Proc. of the IEEE Global Telecommunication Conference, Honolulu, Hawaii, USA (2009)

    Google Scholar 

  7. Ghez, S., Verdu, S., Schwartz, S.C.: Stability properties of slotted aloha with multipacket reception capability. IEEE Transactions on Automatic Control 33, 640–649 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo, M., Wang, X., Wu, M.: On the capacity of k-mpr wireless networks. Wireless Communications 8(7), 3878–3886 (2009)

    Article  Google Scholar 

  9. Heusse, M., Rousseau, F., Guillier, R., Duda, A.: Idle sense: an optimal access method for high throughput and fairness in rate diverse wireless lans. In: ACM SIGCOMM (2005)

    Google Scholar 

  10. Holland, G., Vaidya, N., Bahl, P.: A rate-adaptive mac protocol for multi-hop wireless networks. Mobile Computing and Networking (2001)

    Google Scholar 

  11. Hou, T.-C., Lucantoni, D.M.: Buffer sizing for synchronous self-routing broadband packet switches with bursty traffic. International Journal of Digital and Analog Cabled Communication 2(1), 253–260 (1989)

    Article  Google Scholar 

  12. Hu, C., Hou, J.C.: A novel approach to contention control in ieee 802.11e-operated wlans. In: IEEE INFOCOM, pp. 1190–1198 (May 2007)

    Google Scholar 

  13. Jacobson, V.: Congestion avoidance and control. In: SIGCOMM, Stanford, California, USA, pp. 314–329 (1988)

    Google Scholar 

  14. Jain, R., Chiu, D., Hawe, W.: A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. Computing Research Repository, cs.NI/9809 (1998)

    Google Scholar 

  15. Jung, E., Vaidya, N.: A power control mac protocol for ad hoc networks. Wireless Networks 11, 55–66 (2005)

    Article  Google Scholar 

  16. Kwack, S., Seo, H., Lee, B.: Suitability-based subcarrier allocation for multicast services employing layered video coding in wireless ofdm systems. In: Vehicular Technology Conference, pp. 1752–1756 (October 2007)

    Google Scholar 

  17. Lous, N.J.C., Bours, P.A.H., van Tilborg, H.C.A.: On maximum likelihood soft-decision decoding of binary linear codes. IEEE Transactions on Information Theory 39(1), 197–203 (1993)

    Article  MATH  Google Scholar 

  18. Mergen, G., Tong, L.: Receiver controlled medium access in multihop ad hoc networks with multipacket reception. In: Military Communications Conference, vol. 2, pp. 1014–1018 (2001)

    Google Scholar 

  19. Schlegel, C., Grant, A.: Coordinated multiuser communications. Springer (2006)

    Google Scholar 

  20. LAN/MAN standards Committee, et al.: Information Technology – Telecommunications and Information Exchange Between Systems – Local and Metropolitan Area Networks – Specific Requirements: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std. IEEE (1997)

    Google Scholar 

  21. Tong, L., Zhao, Q., Mergen, G.: Multipacket reception in random access wireless networks: from signal processing to optimal medium access control. IEEE Communications Magazine 39(11), 108–112 (2001)

    Article  Google Scholar 

  22. Van Dam, T., Langendoen, K.: An adaptive energy-efficient mac protocol for wireless sensor networks. In: Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, SenSys 2003, Los Angeles, California, USA, pp. 171–180 (2003)

    Google Scholar 

  23. Weber, S.P., Andrews, J.G., Yang, X., de Veciana, G.: Transmission capacity of wireless ad hoc networks with successive interference cancellation. IEEE Transactions on Information Theory 53(8), 2799–2814 (2007)

    Article  Google Scholar 

  24. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient mac protocol for wireless sensor networks. In: Proceedings of the IEEE Infocom, pp. 1567–1576 (June 2002)

    Google Scholar 

  25. Zhao, Q., Tong, L.: A multiqueue service room mac protocol for wireless networks with multipacket reception. IEEE/ACM Trans. Networking 11, 125–137 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, K., Ghanbarinejad, M., Nikolaidis, I., Schlegel, C. (2013). Additive-Increase Multiplicative-Decrease MAC Protocol with Multi-Packet Reception. In: Tsaoussidis, V., Kassler, A.J., Koucheryavy, Y., Mellouk, A. (eds) Wired/Wireless Internet Communication. WWIC 2013. Lecture Notes in Computer Science, vol 7889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38401-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38401-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38400-4

  • Online ISBN: 978-3-642-38401-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics