Skip to main content

Estimating Resistance against Multidimensional Linear Attacks: An Application on DEAN

  • Conference paper
Information Security and Cryptology (Inscrypt 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7763))

Included in the following conference series:

Abstract

In this paper, we investigate an algorithm which can be used to compute improved estimates of squared correlations of linear approximations over key-alternating block ciphers. The algorithm was previously used by Cho [5] to compute estimates of expected squared correlations and capacities of multidimensional linear approximations of PRESENT. The goal of this paper is to investigate the applicability and usefulness of this algorithm for a nonbinary AES-like symmetric key-alternating block cipher DEAN designed by Baignères et al. [2] who estimated that the best LLR-based distinguisher will require the full code book of about 260 known plaintext blocks to succeed over four rounds of DEAN. We give evidence that there is an LLR-based multidimensional linear distinguisher with estimated data complexity 250 over six rounds of DEAN. Turning this to a (partial) key-recovery attack over the full eight-round DEAN is likely to succeed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear cryptanalysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Baignères, T., Stern, J., Vaudenay, S.: Linear cryptanalysis of non binary ciphers. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 184–211. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Baignères, T., Vaudenay, S.: The complexity of distinguishing distributions (invited talk). In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 210–222. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Daemen, J., Rijmen, V.: The Design of Rijndael – AES, the Advanced Encryption Standard. Springer (2002)

    Google Scholar 

  7. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  8. Drakakis, K., Gow, R., McGuire, G.: APN permutations on ℤ n and Costas arrays. Discrete Applied Mathematics 157(15), 3320–3326 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Leander, G.: On linear hulls, statistical saturation attacks, PRESENT and a cryptanalysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 303–322. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Lidl, R., Niederreiter, H.: Finite fields, 2nd edn. Encyclopedia of mathematics and its applications, vol. 20. Cambridge University Press (1997)

    Google Scholar 

  11. Massey, J.L.: SAFER K-64: A byte-oriented block-ciphering algorithm. In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 1–17. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  12. Massey, J.L.: SAFER K-64: One year later. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 212–241. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  13. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

    Google Scholar 

  14. Nakahara Jr., J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (hull) and algebraic cryptanalysis of the block cipher PRESENT. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 58–75. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  16. Nyberg, K.: Correlation theorems in cryptanalysis. Discrete Applied Mathematics 111(1-2), 177–188 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vaudenay, S.: An experiment on DES statistical cryptanalysis. In: Gong, L., Stern, J. (eds.) CCS 1996, pp. 139–147. ACM Press (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hakala, R.M., Kivelä, A., Nyberg, K. (2013). Estimating Resistance against Multidimensional Linear Attacks: An Application on DEAN. In: Kutyłowski, M., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2012. Lecture Notes in Computer Science, vol 7763. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38519-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38519-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38518-6

  • Online ISBN: 978-3-642-38519-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics