Abstract
Let X = (x 1,..,x n ) and Y = (y 1,...,y m ) be a pair of corresponding plaintext and ciphertext for a cryptosystem. We define an embedded surface of this cryptosystem as any polynomial equation:
which is satisfied by all such pairs. In this paper, we present a new attack on the multivariate public key cryptosystems from Diophantine equations developed by Gao and Heindl by using the embedded surfaces associated to this family of multivariate cryptosystems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis computation of semi-regular overdetermined algebraic equations. In: International Conference on Polynomial System Solving - ICPSS, pp. 71–75 (November 2004)
Ding, J., Buchmann, J., Mohamed, M., Mohamed, W., Weinmann, R.-P.: Mutant xL. In: First International Conference on Symbolic Computation and Cryptography, SCC 2008 (2008)
Ding, J., Hu, L., Nie, X., Li, J., Wagner, J.: High order linearization equation (HOLE) attack on multivariate public key cryptosystems. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 233–248. Springer, Heidelberg (2007a)
Ding, J., Schmidt, D., Werner, F.: Algebraic attack on HFE revisited. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 215–227. Springer, Heidelberg (2008)
Dubois, V., Gama, N.: The degree of regularity of HFE systems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 557–576. Springer, Heidelberg (2010)
Garey, M.R., Johnson, D.S.: Computers and intractability, A Guide to the theory of NP-completeness. W.H. Freeman, San Francisco (1979)
Gao, S., Heindl, R.: Multivariate public key cryptosystems from diophantine equations. Designs, Codes and Cryptography, 1–18 (November 2, 2011), doi:10.1007/s10623-011-9582-1
Heindl, R.A.: New directions in multivariate public key cryptography, Ph.D. Thesis, Clemson University. Mathematical Science - 2009 (2009)
Mohamed, M.S.E., Cabarcas, D., Ding, J., Buchmann, J., Bulygin, S.: MXL3: An Efficient Algorithm for Computing Gröbner Bases of Zero-Dimensional Ideals. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 87–100. Springer, Heidelberg (2010)
Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt ’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)
Patarin, J.: The oil and vinegar signature scheme. Presented at the Dagstuhl Workshop on Cryptography (1997)
Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)
Wang, L.-C., Yang, B.-Y., Hu, Y.-H., Lai, F.: A “Medium-field” multivariate public-key encryption scheme. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 132–149. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ding, J., Ren, A., Tao, C. (2013). Embedded Surface Attack on Multivariate Public Key Cryptosystems from Diophantine Equations. In: Kutyłowski, M., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2012. Lecture Notes in Computer Science, vol 7763. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38519-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-38519-3_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38518-6
Online ISBN: 978-3-642-38519-3
eBook Packages: Computer ScienceComputer Science (R0)