Abstract
Geography Markup Language (GML) has become a standard for encoding and exchanging geographic data in various geographic information systems (GIS) applications. Whereas, high-precision spatial data in GML documents often causes high cost in GML storage and transmission as well as parsing. In this paper, we propose a spatial proximity based GML compression method for GML document compression, which transforms spatial data (coordinates in GML documents) into blocks of coordinates and compress coordinates effectively. Concretely, ordered coordinate dictionaries are constructed firstly, and coordinates are encoded as their ordinal numbers in the coordinate dictionaries. Then, delta encoding and LZW encoding are employed to compress the coordinate dictionaries and coordinate ordinal numbers respectively. Finally, the output of the delta encoder and LZW encoder is streamed to a spatial data container. Extensive experiments over real GML documents show that the proposed method outperforms the existing major XML and GML compression methods in compression ratio, while maintaining an acceptable compression efficiency.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Geospatial information – Geography Markup Language (GML). ISO 19136:2007 (2007)
Huffman, D.A.: A Method for the Construction of Minimum-Redundancy Codes. Proceedings of the IRE 40(9), 1098–1101 (1952)
Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory IT-23(3), 337–343 (1977)
Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Communications of the ACM 30(6), 520–540 (1987)
Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial string matching. IEEE Transactions on Communications 32(4), 396–402 (1984)
Welch, T.A.: A Technique for High-Performance Data Compression. IEEE Computer 17(6), 8–19 (1984)
Hartmut, L., Suciu, D.: XMill: an efficient compressor for XML data. In: ACM SIGMOD 2000, pp. 153–164. ACM Press, New York (2000)
Cheney, J.: Compressing XML with multiplexed hierarchical PPM models. In: DCC 2001, pp. 163–172. IEEE Press, New York (2001)
Tolani, P.M., Haritsa, J.R.: XGrind: a query-friendly XML compressor. In: ICDE 2002, pp. 225–234. IEEE Press, New York (2002)
Min, J., Park, M., Chung, C.: XPress: a queriable compression for XML data. In: ACM SIGMOD 2003, pp. 122–133. IEEE Press, New York (2003)
League, C., Eng, K.: Type-based compression of XML data. In: DCC 2007, pp. 272–282. IEEE Press, New York (2007)
Skibiński, P., Grabowski, S., Swacha, J.: Effective asymmetric XML compression. Software: Practice and Experience 38(10), 1024–1047 (2008)
Guan, J., Zhou, S.: GPress: Towards effective GML documents compresssion. In: ICDE 2007, pp. 1473–1474. IEEE Press, New York (2007)
Guan, J., Zhou, S., Chen, Y.: An effective GML documents compressor. IEICE Transactions on Information and Systems E91-D(7), 1982–1990 (2008)
Wei, Q., Guan, J.: A GML Compression Approach Based on On-line Semantic Clustering. In: Geoinformatics 2010, pp. 1–7. IEEE Press, New York (2010)
Wei, Q.: A Query-Friendly Compression for GML Documents. In: Xu, J., Yu, G., Zhou, S., Unland, R. (eds.) DASFAA Workshops 2011. LNCS, vol. 6637, pp. 77–88. Springer, Heidelberg (2011)
Yu, Y., Li, Y., Zhou, S.: A GML Documents Stream Compressor. In: Xu, J., Yu, G., Zhou, S., Unland, R. (eds.) DASFAA Workshops 2011. LNCS, vol. 6637, pp. 65–76. Springer, Heidelberg (2011)
GZip 1.2.4., http://www.gzip.org
Kolbe, T.H.: CityGML - Exchange and Storage of Virutual 3D City Models (2002), http://www.citygml.org
CGI Interoperability Working Group: The GeoSciML project (2003), http://www.geosciml.org/
Ordnance Survey: OS MasterMap (2001), http://www.ordnancesurvey.co.uk
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wei, Q., Guan, J. (2013). A Spatial Proximity Based Compression Method for GML Documents. In: Wang, J., Xiong, H., Ishikawa, Y., Xu, J., Zhou, J. (eds) Web-Age Information Management. WAIM 2013. Lecture Notes in Computer Science, vol 7923. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38562-9_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-38562-9_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38561-2
Online ISBN: 978-3-642-38562-9
eBook Packages: Computer ScienceComputer Science (R0)