Skip to main content

Automated Reasoning, Fast and Slow

  • Conference paper
Automated Deduction – CADE-24 (CADE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7898))

Included in the following conference series:

  • 1291 Accesses

Abstract

Psychologists have argued that human behavior is the result of the interaction between two different cognitive modules. System 1 is fast, intuitive, and error-prone, whereas System 2 is slow, logical, and reliable. When it comes to reasoning, the field of automated deduction has focused its attention on the slow System 2 processes. We argue that there is an increasing role for forms of reasoning that are closer to System 1 particularly in tasks that involve uncertainty, partial knowledge, and discrimination. The interaction between these two systems of reasoning is also fertile ground for further exploration. We present some tentative and preliminary speculation on the prospects for automated reasoning in the style of System 1, and the synergy with the more traditional System 2 strand of work. We explore this interaction by focusing on the use of cues in perception, reasoning, and communication.

This work was supported by NSF Grant CSR-EHCS(CPS)-0834810, NASA Cooperative Agreement NNA10DE73C and by DARPA under agreement number FA8750-12-C-0284. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of DARPA or the U.S. Government. Sam Owre and Shalini Ghosh provided insightful feedback on earlier drafts of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baldi, P., Itti, L.: Of bits and wows: A Bayesian theory of surprise with applications to attention. Neural Networks 23, 649–666 (2010)

    Article  Google Scholar 

  2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Springer (2004), Coq home page, http://coq.inria.fr/

  3. Bevier, W.R., Hunt, W.A., Moore, J.S., Young, W.D.: Special issue on system verification. Journal of Automated Reasoning 5(4), 409–530 (1989)

    Google Scholar 

  4. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

    Google Scholar 

  5. Bundy, A., Stevens, A., van Harmelen, F., Ireland, A., Smaill, A.: Rippling: A heuristic for guiding inductive proofs. Artif. Intell. 62(2), 185–253 (1993)

    Article  MATH  Google Scholar 

  6. Cork, A., Justham, L., West, A.: Cricket batting stroke timing of a batsman when facing a bowler and a bowling machine. In: The Engineering of Sport 7, pp. 143–150. Springer (2008)

    Google Scholar 

  7. Darwiche, A.: Bayesian networks. Commun. ACM 53(12), 80–90 (2010)

    Article  Google Scholar 

  8. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelligence. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers (2009)

    Google Scholar 

  9. Ghosh, S., Shankar, N., Owre, S.: Machine reading using Markov logic networks for collective probabilistic inference. In: Proceedings of ECML-CoLISD 2011 (2011)

    Google Scholar 

  10. Gigerenzer, G., Todd, P.M.: Simple heuristics that make us smart. Oxford University Press, USA (1999)

    Google Scholar 

  11. Gogate, V., Domingos, P.: Probabilistic theorem proving. CoRR, abs/1202.3724 (2012)

    Google Scholar 

  12. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 633–654. IOS Press (2009)

    Google Scholar 

  13. Gonthier, G.: Engineering mathematics: the odd order theorem proof. In: Giacobazzi, R., Cousot, R. (eds.) The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2013, Rome, Italy, January 23-25, pp. 1–2. ACM (2013)

    Google Scholar 

  14. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K., Tenenbaum, J.B.: Church: a language for generative models. In: McAllester, D.A., Myllymäki, P. (eds.) Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence, UAI 2008, Helsinki, Finland, July 9-12, pp. 220–229. AUAI Press (2008)

    Google Scholar 

  15. Jaynes: Probability Theory: The Logic of Science. Cambridge University Press (2003)

    Google Scholar 

  16. Toplak, M.E., Stanovich, K.E., West, R.F.: Intelligence and rationality. In: Sternberg, R., Kaufman, S.B. (eds.) Cambridge handbook of intelligence, 3rd edn., pp. 784–826. Cambridge University Press (2012)

    Google Scholar 

  17. Kahneman, D.: Thinking, fast and slow. Farrar, Straus and Giroux (2011)

    Google Scholar 

  18. Kandel, E.R.: In search of memory: The emergence of a new science of mind. WW Norton & Company (2007)

    Google Scholar 

  19. Kautz, H., Selman, B., Jiang, Y.: A general stochastic approach to solving problems with hard and soft constraints. In: The Satisfiability Problem: Theory and Applications, pp. 573–586. AMS (1997)

    Google Scholar 

  20. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)

    Google Scholar 

  21. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: A hybrid approach. International Journal on Software Tools for Technology Transfer (STTT) (2004)

    Google Scholar 

  22. Laibson, D.: A cue-theory of consumption. The Quarterly Journal of Economics 116(1) (February 2001)

    Google Scholar 

  23. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)

    Article  Google Scholar 

  24. MacKay, D.J.C.: Information theory, inference, and learning algorithms. Cambridge University Press (2003)

    Google Scholar 

  25. Neal, R.M.: Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto (September 1993)

    Google Scholar 

  26. Neapolitan, R.E.: Learning Bayesian Networks. Prentice-Hall (2003)

    Google Scholar 

  27. Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal verification for fault-tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on Software Engineering 21(2), 107–125 (1995) PVS home page, http://pvs.csl.sri.com

  28. Park, J.D.: Using weighted MAX-SAT engines to solve MPE. In: Dechter, R., Sutton, R.S. (eds.) Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth Conference on Innovative Applications of Artificial Intelligence, Edmonton, Alberta, Canada, July 28-August 1, pp. 682–687. AAAI Press / The MIT Press (2002)

    Google Scholar 

  29. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  30. Pinker, S.: How the mind works. Annals of the New York Academy of Sciences 882(1), 119–127 (1999)

    Article  Google Scholar 

  31. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and deterministic dependencies. In: Proceedings of the Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference, Boston, Massachusetts, USA, July 16-20, pp. 458–463. AAAI Press (2006)

    Google Scholar 

  32. Ramsey, F.P.: Truth and probabiity. In: Mellor, D.H. (ed.) Philosophical Papers, pp. 52–109. Cambridge University Press (1990)

    Google Scholar 

  33. Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability distributions. In: Conf. Record of 29th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, POPL 2002, pp. 154–165. ACM Press, New York (2002)

    Google Scholar 

  34. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107–136 (2006)

    Article  Google Scholar 

  35. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. In: AAAI-92: Proceedings 10th National Conference on AI. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society (January 1995)

    Google Scholar 

  36. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  37. Silver, N.: The Signal and the Noise: Why So Many Predictions Fail-but Some Don’t. Penguin Press (2012)

    Google Scholar 

  38. Simon, H.A.: What is an “explanation” of behavior? Psychological Science 3(3), 150–161 (1992)

    Article  Google Scholar 

  39. Thaler, R.H., Sunstein, C.R.: Nudge: Improving decisions about health, wealth, and happiness. Yale University Press (2008)

    Google Scholar 

  40. P.M. Todd, G. Gigerenzer. Précis of simple heuristics that make us smart. Behavioral and brain sciences, 23(05):727–741, 2000.

    Article  Google Scholar 

  41. Ulmer, S.S., Hintze, W., Kirklosky, L.: The decision to grant or deny certiorari: Further consideration of cue theory. Law & Society Review 6(4), 637–644 (1972)

    Article  Google Scholar 

  42. Wei, W., Erenrich, J., Selman, B.: Towards efficient sampling: Exploiting random walk strategies. In: McGuinness, D.L., Ferguson, G. (eds.) Proceedings of the Nineteenth National Conference on Artificial Intelligence, pp. 670–676. AAAI Press / The MIT Press (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shankar, N. (2013). Automated Reasoning, Fast and Slow. In: Bonacina, M.P. (eds) Automated Deduction – CADE-24. CADE 2013. Lecture Notes in Computer Science(), vol 7898. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38574-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38574-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38573-5

  • Online ISBN: 978-3-642-38574-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics