Skip to main content

Controlling Search Using an S Decreasing Constriction Factor for Solving Multi-mode Scheduling Problems

  • Conference paper
Recent Trends in Applied Artificial Intelligence (IEA/AIE 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7906))

Abstract

The multi-mode resource-constrained project scheduling problem (MRCPSP) is an important issue for industry, and has been confirmed to be an NP-hard problem. The particle swarm optimization meta-heuristic is an effective and promising method and well applied to solve a variety of NP application problems. MRCPSP involves two sub-problems: the activity mode selection and the activity order sub-problems. Therefore, a discrete version PSO and constriction version PSO were applied for solving these two sub-problems respectively. Discrete PSO is utilized for determining the activity operation mode, the constriction PSO is applied for deciding the activity order. To enhance the exploration and exploitation search so as to improve search efficiency, an S decreasing constriction factor adjustment mechanism was proposed. To verify the performance of proposed scheme, instances of MRCPSP in PSPLIB were tested and comparisons with other state-of-art algorithms were also conducted. The experimental results reveal that the proposed S decreasing constriction factor adjustment scheme is efficient for solving MRCPSP type scheduling problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hartmann, S., Kolisch, R.: Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. European Journal of Operational Research 127, 394–407 (2000)

    Article  MATH  Google Scholar 

  2. Bouleimen, K., Lecocq, H.: A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European Journal of Operational Research 149, 268–281 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Nonobe, K., Ibaraki, T.: Formulation and tabu search algorithm for the resource constrained project scheduling problem. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp. 557–588. Kluwer Academic Publishers (2001)

    Google Scholar 

  4. Peteghema, V.V., Vanhoucke, M.: A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Operational Research 201, 409–418 (2010)

    Article  MathSciNet  Google Scholar 

  5. Chiang, C.W., Huang, Y.Q., Wang, W.Y.: Ant colony optimization with parameter adaptation for multi-mode resource-constrained project scheduling. Journal of Intelligent and Fuzzy Systems 19, 345–358 (2008)

    MATH  Google Scholar 

  6. Chen, R.M., Wang, C.M.: Project Scheduling Heuristics Based Standard PSO for Task-Resource Assignment in Heterogeneous Grid. Abstract and Applied Analysis 2011, Article ID 589862, 20 pages (2011)

    Google Scholar 

  7. Jarboui, B., Damak, N., Siarry, P., Rebai, A.: A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and Computation 195, 299–308 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Marinakis, Y., Marinaki, M.: A Hybrid Multi-Swarm Particle Swarm Optimization algorithm for the Probabilistic Traveling Salesman Problem. Computers & Operations Research 37, 432–442 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, B., Wang, L., Jin, Y.H.: An Effective PSO-Based Memetic Algorithm for Flow Shop Scheduling. IEEE Transactions on Systems, Man, and Cybernetics 37, 18–27 (2007)

    Article  Google Scholar 

  10. Shen, H., Zhu, Y., Liu, T., Jin, L.: Particle Swarm Optimization in Solving Vehicle Routing Problem. In: Intelligent Computation Technology and Automation, pp. 287–291 (2009)

    Google Scholar 

  11. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  12. Bratton, D., Kennedy, J.: Defining a Standard for Particle Swarm Optimization. In: IEEE Swarm Intelligence Symposium, pp. 120–127 (2007)

    Google Scholar 

  13. Kennedy, J., Eberhard, R.C.: A Discrete Binary Version of the Particle Swarm Algorithm. In: IEEE Conference on Systems, Man, and Cybernetics, Piscataway, vol. 5, pp. 4104–4109 (1997)

    Google Scholar 

  14. Kolisch, R., Hartmann, S.: Heuristic algorithms for the resource-constrained project scheduling problem: Classification and computational analysis. In: Weglarz, J. (ed.) Project Scheduling, Recent Models, Algorithms and Applications, ch. 7, pp. 147–178. Kluwer Academic Publishers, Norwell (1999)

    Google Scholar 

  15. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Proceedings of 7th Annual Conference on Evolution Computation, pp. 591–601 (1998)

    Google Scholar 

  16. Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Applied Soft Computing 11, 3658–3670 (2011)

    Article  Google Scholar 

  17. Lei, K., Qiu, Y., He, Y.: A new adaptive well-chosen inertia weight strategy toautomatically harmonize global and local search ability in particle swarm optimization. In: ISSCAA, pp. 977–980 (2006)

    Google Scholar 

  18. Adriansyah, A., Amin, S.H.M.: Analytical and empirical study of particle swarm optimization with a sigmoid decreasing inertia weight. In: Regional Conference on Engineering and Science, Johor (2006)

    Google Scholar 

  19. Józefowska, J., Mika, M., Różycki, R., Waligóra, G., Węglarz, J.: Simulated annealing formulti-mode resource constrained project scheduling. Annals of Operations Research 102(1-4), 137–155 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jarboui, B., Damak, N., Siarry, P., Rebai, A.: A combinational particle swarm optimization for solving multi-mode resource-constrained project scheduling problem. Applied Mathematics and Computation 195(1), 299–308 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lova, A., Tormos, P., Cervantes, M., Barber, F.: An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes. International Journal of Production Economics 117, 302–316 (2009)

    Article  Google Scholar 

  22. Ranjbar, M., De Reyck, B., Kianfar, F.: A hybrid scatter-search for the discrete time/resource trade-o_ problem in project scheduling. European Journal of Operational Research 193, 35–48 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, RM., Wang, CM. (2013). Controlling Search Using an S Decreasing Constriction Factor for Solving Multi-mode Scheduling Problems . In: Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker, C.M., Treur, J. (eds) Recent Trends in Applied Artificial Intelligence. IEA/AIE 2013. Lecture Notes in Computer Science(), vol 7906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38577-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38577-3_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38576-6

  • Online ISBN: 978-3-642-38577-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics