Skip to main content

Liver Cell Nucleuses and Vacuoles Segmentation by Using Genetic Algorithms for the Tissue Images

  • Conference paper
Recent Trends in Applied Artificial Intelligence (IEA/AIE 2013)

Abstract

This paper proposes image segmentation methods for cell nucleuses and vacuoles in the liver fibrosis tissue images. The novel idea is to segment the objects by extracting the image features to determine the required cell in liver fibrosis images. In the proposed segmentation phase, some image processing methods are applied to segment the objects of nucleuses and vacuoles. Run Length method makes the object regions become obviously and the noises can be suppressed. The morphological opening operation is performed to split connecting objects. For vacuole regions segmentation, the opening operation applies the mode filter to stuff up the dark holes in the objects and keep the completeness of regions. Furthermore, the proposed method uses the Genetic Algorithm to find the most appropriate parameters and weights for the region segmentation. From the experimental results, the proposed method can achieve a good performance on the segmentation of cell nucleuses and vacuoles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bataller, R., Brenner, D.A.: Liver fibrosis. The Journal of Clinical Investigation 115(2), 209–218 (2005)

    Google Scholar 

  2. Chan, Y.K., Chang, C.C.: Image matching using run-length feature. Pattern Recognition Letters 22(5), 447–455 (2001)

    Article  MATH  Google Scholar 

  3. Chaves-Gonzalez, J.M., Vega-Rodriguez, M.A., Gomez-Pulido, J.A., Sanchez-Perez, J.M.: Detecting Skin in Face Recognition Systems: A Colour Spaces Study. Digital Signal Processing 20(3), 806–823 (2010)

    Article  Google Scholar 

  4. Dai, L., Ji, H., Kong, X.W., Zhang, Y.H.: Antifibrotic effects of ZK14, a novel nitric oxidedonating Biphenyldicarboxylate derivative, on rat HSC-T6 cells and CCl4- induced hepatic fibrosis. Acta Pharmacologica Sinica 31, 27–34 (2010)

    Article  Google Scholar 

  5. Department of Health, Executive Yuan, R.O.C(TAIWAN). 2010 statistics of causes of death 2012 (2012), http://www.doh.gov.tw/ufile/doc/2010-statistics%20of%20cause%20of%20death.pdf

  6. Dillencourt, M., Samet, H., Tamminen, M.: A general approach to connected components labeling for arbitrary image representations. Journal of the ACM 39(2), 253–280 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Friedman, S.L.: Liver fibrosis- from bench to bedside. Journal of Hepatology (38), 38–53 (2003)

    Google Scholar 

  8. Griffiths, C., Rooney, C., Brock, A.: Leading causes of death in England and Wales -how should we group causes. Health Statistics Quarterly (28), 6–17 (2005)

    Google Scholar 

  9. Huang, D.C., Chen, R.T., Chan, Y.K., Jiang, X.: An automatic indirect immunofluorescence based cell segmentation and counting system. National Digital Library of These and Dissertations in Taiwan (2010)

    Google Scholar 

  10. MacQueen, J.: Some Methods for Classification and Analysis of Multivariate Observations. In: Fifth Berkley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  11. Man, K.F., Tang, K.S., Kwong, S.: Genetic Algorithms: Concepts and Designs. Springer, New York (1999)

    Book  MATH  Google Scholar 

  12. Maulik, U.: Medical Image Segmentation Using Genetic Algorithms. IEEE Transactions on Information Technology in Biomedicine 13(2), 166–173 (2009)

    Article  Google Scholar 

  13. Otsu, N.: A Threshold Selection Method from Gray-Level Histogram. IEEE Transactions on System Man Cybernetics SMC-9(1), 62–66 (1979)

    MathSciNet  Google Scholar 

  14. Raghavan, V., Bollmann, P., Jung, G.S.: A critical investigation of recall and precision as measures of retrieval system performance. ACM Transactions on Information Systems 7(3), 205–229 (1989)

    Article  Google Scholar 

  15. Stevenson, R.L., Arce, G.R.: Morphological Filters: Statistics and Further Syntactic Properties. IEEE Transactions on Circuits and Systems CAS-34(11) (1987)

    Google Scholar 

  16. Wikipedia, The Free Encyclopedia, F1 score, http://en.wikipedia.org/wiki/F1_score

  17. Wikipedia, The Free Encyclopedia, Gamma correction, http://en.wikipedia.org/wiki/Gamma_correction

  18. F precision and recall Wikipedia, The Free Encyclopedia, Sensitivity and specificity, http://en.wikipedia.org/wiki/Sensitivity_and_specificity

  19. Yun, Y.S.: Hybrid Genetic Algorithm with Adaptive Local Search Scheme. Computers and Industrial Engineering 51(1), 128–141 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, CT., Wang, CL., Chan, YK., Tsai, MH., Wang, YS., Cheng, WY. (2013). Liver Cell Nucleuses and Vacuoles Segmentation by Using Genetic Algorithms for the Tissue Images. In: Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker, C.M., Treur, J. (eds) Recent Trends in Applied Artificial Intelligence. IEA/AIE 2013. Lecture Notes in Computer Science(), vol 7906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38577-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38577-3_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38576-6

  • Online ISBN: 978-3-642-38577-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics