Skip to main content

Imbalanced Learning Ensembles for Defect Detection in X-Ray Images

  • Conference paper
Recent Trends in Applied Artificial Intelligence (IEA/AIE 2013)

Abstract

This paper describes the process of detection of defects in metallic pieces through the analysis of X-ray images. The images used in this work are highly variable (several different pieces, different views, variability introduced by the inspection process such as positioning the piece). Because of this variability, the sliding window technique has been used, an approach based on data mining. Experiments have been carried out with various window sizes, several feature selection algorithms and different classification algorithms, with a special focus on learning unbalanced data sets. The results show that Bagging achieved significantly better results than decision trees by themselves or combined with SMOTE or Undersampling.

This work was supported by Project Magno MAGNO2008-1028-CENIT. We also thanks to Grupo Antolin for providing us the X-ray images used in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cartz, L.: Nondestructive Testing: Radiography, Ultrasonics, Liquid Penetrant, Magnetic Particle, Eddy Current. Asm International (1995)

    Google Scholar 

  2. Spencer, F.: Visual inspection research project report on benchmark inspections. Technical report, Office of Aviation Research Washington, D.C. 20591: U.S. Department of Transportation, Federal Aviation Administration,Washington, DC (1996)

    Google Scholar 

  3. Liao, T.: Classification of welding flaw types with fuzzy expert systems. Expert Systems with Applications 25, 101–111 (2003)

    Article  Google Scholar 

  4. Rebuffel, V., Sood, S., Blakeley, B.: Defect detection method in digital radiography for porosity in magnesium casting. In: Materials Evaluation, ECNDT 2006 (2006)

    Google Scholar 

  5. Hanke, R., Hassler, U., Heil, K.: Fast automatic x-ray image processing by means of a new multistage filter for background modelling. In: Proceedings of the IEEE International Conference on Image Processing, ICIP 1994, vol. 1, pp. 392–396. IEEE (1994)

    Google Scholar 

  6. Ng, H.: Automatic thresholding for defect detection. Pattern Recognition Letters 27, 1644–1649 (2006)

    Article  Google Scholar 

  7. Saravanan, T., Bagavathiappan, S., Philip, J., Jayakumar, T., Raj, B.: Segmentation of defects from radiography images by the histogram concavity threshold method. Insight-Non-Destructive Testing and Condition Monitoring 49, 578–584 (2007)

    Article  Google Scholar 

  8. Anand, R., Kumar, P., et al.: Flaw detection in radiographic weld images using morphological approach. NDT & E International 39, 29–33 (2006)

    Article  Google Scholar 

  9. Wang, M., Chai, L.: Application of an improved watershed algorithm in welding image segmentation. Transactions China Welding Institution 28, 13 (2007)

    Google Scholar 

  10. Anand, R., Kumar, P., et al.: Flaw detection in radiographic weldment images using morphological watershed segmentation technique. NDT & E International 42, 2–8 (2009)

    Article  Google Scholar 

  11. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. García-Osorio, C., Díez-Pastor, J.F., Rodríguez, J.J., Maudes, J.: License plate number recognition - new heuristics and a comparative study of classifiers. In: Proceedings of the Fifth International Conference on Informatics in Control, Automation and Robotics, Robotics and Automation, ICINCO 2008, vol. 1, pp. 268–273 (2008)

    Google Scholar 

  13. Jones, M., Rehg, J.: Statistical color models with application to skin detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, IEEE (1999)

    Google Scholar 

  14. Dlagnekov, L.: License plate detection using adaboost. Computer Science and Engineering Department, San Diego (2004)

    Google Scholar 

  15. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. 511–518. IEEE (2001)

    Google Scholar 

  16. Wang, Y., Sun, Y., Lv, P., Wang, H.: Detection of line weld defects based on multiple thresholds and support vector machine. NDT & E International 41, 517–524 (2008)

    Article  Google Scholar 

  17. Mery, D.: Automated detection of welding discontinuities without segmentation. Materials Evaluation, 657–663 (2011)

    Google Scholar 

  18. Belaifa, S., Tridi, M., Nacereddine, N.: Weld defect classification using em algorithm for gaussian mixture model. In: SETIT Tunisia 2005 (2005)

    Google Scholar 

  19. Montabone, S., Soto, A.: Human detection using a mobile platform and novel features derived from a visual saliency mechanism. Image and Vision Computing 28, 391–402 (2010)

    Article  Google Scholar 

  20. Haralick, R., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, 610–621 (1973)

    Google Scholar 

  21. Hall, M.: Correlation-based feature selection for machine learning. PhD thesis, The University of Waikato (1999)

    Google Scholar 

  22. Yu, L., Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: Machine Learning-International Workshop Then Conference, vol. 20, pp. 856–863 (2003)

    Google Scholar 

  23. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  24. Chawla, N., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter 6, 1–6 (2004)

    Article  Google Scholar 

  25. Fawcett, T.: An introduction to roc analysis. Pattern Recognition Letters 27, 861–874 (2006)

    Article  Google Scholar 

  26. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)

    MATH  Google Scholar 

  27. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)

    Article  Google Scholar 

  28. Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kauffman (1993)

    Google Scholar 

  29. Cieslak, D.A., Hoens, T.R., Chawla, N.V., Kegelmeyer, W.P.: Hellinger distance decision trees are robust and skew-insensitive. Data Min. Knowl. Discov. 24, 136–158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Provost, F., Domingos, P.: Tree induction for probability-based ranking. Machine Learning 52, 199–215 (2003)

    Article  MATH  Google Scholar 

  31. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Dietterich, T.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10, 1895–1923 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díez-Pastor, J.F., García-Osorio, C., Barbero-García, V., Blanco- Álamo, A. (2013). Imbalanced Learning Ensembles for Defect Detection in X-Ray Images. In: Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker, C.M., Treur, J. (eds) Recent Trends in Applied Artificial Intelligence. IEA/AIE 2013. Lecture Notes in Computer Science(), vol 7906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38577-3_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38577-3_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38576-6

  • Online ISBN: 978-3-642-38577-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics