Skip to main content

Estimating the Maximum Shear Modulus with Neural Networks

  • Conference paper
Recent Trends in Applied Artificial Intelligence (IEA/AIE 2013)

Abstract

Small strain shear modulus is one of the most important geotechnical parameters to characterize soil stiffness. In-situ stiffness of soils and rocks is much higher than was previously thought as finite element analysis have shown. Also, the stress-strain behaviour of those materials is non-linear in most cases with small strain levels. The commun approach for getting the small strain shear modulus is usually based on measure of seismic wave velocities. Nevertheless, for design purposes is very useful to derive that modulus from correlations with in-situ tests output parameters. In this view, the use of Neural Networks seems very appropriate as the complexity of the system keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clayton, C., Heymann, G.: Stiffness of geomaterials at very small strains. Géotechnique 51(3), 245–255 (2001)

    Article  Google Scholar 

  2. Fahey, M.: Soil stiffness values for foundation settlement analysis. In: Proc. 2nd Int. Conf. on Pre-failure Deformation Characteristics of Geomaterials, vol. 2, pp. 1325–1332. Balkema, Lisse (2001)

    Google Scholar 

  3. Peck, R.B., Hanson, W.E., Thornburn, T.H.: Foundation Engineering, 2nd edn. John Wiley & Sons (1974)

    Google Scholar 

  4. Lunne, T., Robertson, P., Powell, J.: Cone penetration testing in geotechnical practice. Spon E & F N (1997)

    Google Scholar 

  5. Marchetti, S.: In-situ tests by flat dilatometer. Journal of the Geotechn. Engineering Division 106(GT3), 299–321 (1980)

    Google Scholar 

  6. Cruz, N., Devincenzi, M., Viana da Fonseca, A.: DMT experience in iberian transported soils. In: Proc. 2nd International Flat Dilatometer Conference, pp. 198–204 (2006)

    Google Scholar 

  7. Cruz, N.: Modelling geomechanics of residual soils by DMT tests. PhD thesis, Universidade do Porto (2010)

    Google Scholar 

  8. Cruz, M., Santos, J.M., Cruz, N.: Maximum Shear Modulus Prediction by Marchetti Dilatometer Test Using Neural Networks. In: Iliadis, L., Jayne, C. (eds.) EANN/AIAI 2011, Part I. IFIP AICT, vol. 363, pp. 335–344. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Marchetti, S.: The flat dilatometer: Design applications. In: Third Geotechnical Engineering. Conf., Cairo University (1997)

    Google Scholar 

  10. Mayne, P.W.: Interrelationships of DMT and CPT in soft clays. In: Proc. 2nd International Flat Dilatometer Conference, pp. 231–236 (2006)

    Google Scholar 

  11. Hryciw, R.D.: Small-strain-shear modulus of soil by dilatometer. Journal of Geotechnical Eng. ASCE 116(11), 1700–1716 (1990)

    Article  Google Scholar 

  12. Hardin, B.O., Blandford, G.E.: Elasticity of particulate materials. J. Geot. Eng. Div. 115(GT6), 788–805 (1989)

    Google Scholar 

  13. Jamiolkowski, B.M., Ladd, C.C., Jermaine, J.T., Lancelota, R.: New developments in field and laboratory testing of soils. In: XI ISCMFE, vol. 1, pp. 57–153 (1985)

    Google Scholar 

  14. Sully, J.P., Campanella, R.G.: Correlation of maximum shear modulus with DMT test results in sand. In: Proc. XII ICSMFE, pp. 339–343 (1989)

    Google Scholar 

  15. Tanaka, H., Tanaka, M.: Characterization of sandy soils using CPT and DMT. Soils and Foundations 38(3), 55–65 (1998)

    Article  Google Scholar 

  16. Marchetti, S., Monaco, P., Totani, G., Marchetti, D.: Situ Tests by Seismic Dilatometer (SDMT). In: Crapps, D.K. (ed.) From Research to Practice in Geotechnical Engineering, vol. 180, pp. 292–311. ASCE Geotech. Spec. Publ. (2008)

    Google Scholar 

  17. Huang, Y., Draper, N.R.: Transformations, regression geometry and R2. Computational Statistics & Data Analysis 42(4), 647–664 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Netlab, http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/

  19. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press (1996)

    Google Scholar 

  20. Cortes, C., Vapnik, V.: Support-vector Networks. Journal of Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  21. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011)

    Google Scholar 

  22. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  23. Schölkopf, B., Smola, A., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Computation 12, 1207–1245 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cruz, M., Santos, J.M., Cruz, N. (2013). Estimating the Maximum Shear Modulus with Neural Networks. In: Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker, C.M., Treur, J. (eds) Recent Trends in Applied Artificial Intelligence. IEA/AIE 2013. Lecture Notes in Computer Science(), vol 7906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38577-3_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38577-3_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38576-6

  • Online ISBN: 978-3-642-38577-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics