
Verification of EB3 Specifications using CADP

Dimitris Vekris1 ⋆ , Frédéric Lang2, Catalin Dima1, Radu Mateescu2

1 LACL, Université Paris-Est
61, av. du Général de Gaulle, F-94010 Créteil, France

{Dimitrios.Vekris,Catalin.Dima}@u-pec.fr
2 Inria Grenoble Rhône-Alpes and LIG – CONVECS team

655, av. de l’Europe, Montbonnot, F-38334 Saint Ismier, France
{Frederic.Lang,Radu.Mateescu}@inria.fr

Abstract. eb
3 is a specification language for information systems. The

core of the eb
3 language consists of process algebraic specifications de-

scribing the behaviour of the entities in a system, and attribute function
definitions describing the entity attributes. The verification of eb

3 spec-
ifications against temporal properties is of great interest to users of eb

3.
In this paper, we propose a translation from eb

3 to LOTOS NT (LNT for
short), a value-passing concurrent language with classical process algebra
features. Our translation ensures the one-to-one correspondence between
states and transitions of the labelled transition systems corresponding to
the eb

3 and LNT specifications. We automated this translation with the
eb

32lnt tool, thus equipping the eb
3 method with the functional verifi-

cation features available in the CADP toolbox.

1 Introduction

The eb
3 method [10] is an event-based paradigm tailored for information systems

(ISs). eb
3 has been used in the research projects selkis [19] and eb

3
sec [17],

whose primary aim is the formal specification of ISs with security policies. In the
eb

3
sec project, real banking industry case studies have been studied, describing

interaction with brokers, customers and external financial systems. The selkis

project deals with two case studies from the medical domain. The first one
draws data records from medical imaging devices. The access to these records
is done via web-based applications. The second one deals with availability and
confidentiality issues for medical emergency units evolving in a great mountain
range, like the Alps in that case.

A typical eb
3 specification defines entities, associations, and their respective

attributes. The process algebraic nature of eb
3 enables the explicit definition

of intra-entity constraints, making them easy for the IS designer to review and
understand. Yet, its particular feature compared to classical process algebras,

⋆ Partially supported by selkis ANR Project. The LACL group is grateful to CON-
VECS for its warm welcome to INRIA Grenoble in 2012 and wishes to thank all its
members for useful advice and discussions.

such as CSP [15], lies in the use of attribute functions, a special kind of recur-
sive functions evaluated on the system execution trace. Combined with guards,
attribute functions facilitate the definition of complex inter-entity constraints
involving the history of events. The use of attribute functions simplifies sys-
tem understanding, enhances code modularity, and streamlines maintenance.
However, given that ISs are complex systems involving data management and
concurrency, a rigorous design process based on formal specification using eb

3

must be completed with effective formal verification features.

Existing attempts for verifying eb
3 specifications are based on translations

from eb
3 to other formal methods equipped with verification capabilities. A first

line of work [13, 14] focused on devising translations from eb
3 attribute functions

and processes to the B method [2], which opened the way for proving invariant
properties of eb

3 specifications using tools like Atelier B [6]. Another line of
work concerned the verification of temporal logic properties of eb

3 specifications
by means of model checking techniques. For this purpose, the formal description
and verification of an IS case-study using six model checkers was undertaken
in [9, 5]. This study revealed the necessity of branching-time logics for accu-
rately characterizing properties of ISs, and also the fact that process algebraic
languages are suitable for describing the behaviour and synchronization of IS
entities. However, no attempt of providing a systematic translation from eb

3 to
a target language accepted as input by a model checker was made so far.

In this paper, we aim at filling this gap by proposing a translation from eb
3

to LNT [7], a new generation process algebraic specification language inspired
from E-LOTOS [16]. As far as we know, this is the first attempt to provide a
general translation from eb

3 to a classical value-passing process algebra. It is
worth noticing that CSP and LNT were already considered in [9] for describing
ISs, and identified as candidate target languages for translating eb

3. Since our
primary objective was to provide temporal property verification features for eb

3,
we focused our attention on LNT, which is one of the input languages accepted
by the CADP verification toolbox [11], and hence is equipped with on-the-fly
model checking for action-based, branching-time logics involving data.

At first sight, given that eb
3 has structured operational semantics based on

a labelled transition system (LTS) model, its translation to a process algebra
may seem straightforward. However, this exercise proved to be rather complex,
the main difficulty being to translate a history-based language to a process al-
gebra with standard LTS semantics. To overcome this difficulty, we considered
alternative memory-based semantics of eb

3 [20], which were shown to be equiva-
lent to the original trace-based semantics defined for finite-state systems in [10].
Another important ingredient of the translation was the multiway value-passing
rendezvous of LNT, which enabled to obtain a one-to-one correspondence be-
tween the transitions of the two LTSs underlying the eb

3 and LNT descriptions,
and hence to preserve strong bisimulation. The presence of array types and of
usual programming language constructs (e.g., loops and conditionals) in LNT
was also helpful for specifying the memory, the Kleene star-closure operators,
and the eb

3 guarded expressions containing attribute function calls. At last,

2

EB3 ::= A1; . . . ; An; S1; . . . ; Sm

A ::= f (T : T , y : T) : T = match last (T) with

⊥ : v0 | α1 (x1) : v1 | . . . | αq (xq) : vq [| : vq+1]
S ::= P (x) = E

E ::= λ | α (v) | E1.E2 | E1 |E2 | E0
∗ | E1 |[∆]|E2 | |x :V :E0 |

|[∆]|x :V :E0 | C ⇒ E | P (v)

Fig. 1. eb
3 syntax

the constructed data types and pattern-matching mechanisms of LNT enabled
a natural description of eb

3 data types and attribute functions.
We implemented our translation in the eb

32lnt tool, thus making possible
the analysis of eb

3 specifications using all the state-of-the-art features of the
CADP toolbox, in particular the verification of data-based temporal properties
expressed in MCL [18] using the on-the-fly model checker EVALUATOR 4.0.

The paper is organized as follows. Sections 2 and 3 give an overview of the eb
3

and LNT languages, respectively. Section 4 presents our translation from eb
3 to

LNT, implemented by the eb
32lnt translator. Section 5 shows how eb

32lnt and
CADP can be used for verifying the correctness requirements of an IS. Finally,
Section 6 summarizes the results and draws up lines for future work.

2 The Language EB3

The eb
3 method has been specially designed to specify the functional behaviour

of ISs. A standard eb
3 specification comprises (1) a class diagram representing

entity types and associations for the IS being specified, (2) a process algebra
specification, denoted by main , describing the IS, i.e., the valid traces of execu-
tion describing its behaviour, (3) a set of attribute function definitions, which
are recursive functions on the system execution trace, and (4) input/output rules
to specify outputs for input traces, or SQL expressions used to specify queries
on the class diagram. We limit the presentation to the process algebra and the
set of attribute functions. The eb

3 syntax is presented in Figure 1 and the eb
3

trace semantics SemT [10] are given in Figure 2 as a set of rules named T1 to
T11. Both figures are commented below.

Process expressions. We write x, y, x1, x2, . . . for variables and v, w, v1, v2, . . .

for data expressions over user-defined domains, such as integers, Booleans and
more complex domains that we do not give formally, for conciseness. Expressions
are built over variables, constants, and standard operations. We also use the
overlined notation as a shorthand notation for lists, e.g., x denotes a list of
variables x1, . . . , xn of arbitrary length. An eb

3 specification consists of a set of
attribute function definitions A1, . . . , An, and of a set of process definitions of
the form “P (x) = E”, where P is a process name and E is a process expression.

Let Act be a set of actions written ρ, ρ1, ρ2, . . . and Lab be a set of labels

written α, α1, α2, . . . Each action ρ is either the internal action written λ, or a

3

(T1)
ρ

ρ−→ √ (T7)
E1

ρ−→ E′

1 E2

ρ−→ E′

2

E1 |[∆]|E2

ρ−→ E′

1 |[∆]|E′

2

in (ρ, ∆)

(T2)
E1

ρ−→ E′

1

E1.E2

ρ−→ E′

1.E2

(T8)
E1

ρ−→ E′

1

E1 |[∆]|E2

ρ−→ E′

1 |[∆]|E2

¬in (ρ,∆)

(T3)
E2

ρ−→ E′

2√
.E2

ρ−→ E′

2

(T9) √
|[∆]|

√ λ−→ √

(T4)
E1

ρ−→ E′

1

E1 |E2

ρ−→ E′

1

(T10)
E0

ρ−→ E′

0

C ⇒ E0

ρ−→ E′

0

‖C‖

(T5)
E0

∗ λ−→ √ (T11)
E[x := v]

ρ−→ E′

P (v)
ρ−→ E′

P (x) = E

(T6)
E0

ρ−→ E′

0

E0
∗ ρ−→ E′

0.E0
∗

Fig. 2. eb
3 trace semantics SemT

visible action of the form “α (v)”, where α ∈ Lab. An action ρ is the simplest
process expression, whose semantics are given by rule T1. The symbol

√
(which

is not part of the user syntax) denotes successful execution. The trace T (implicit
in the presentation) of an eb

3 specification at a given moment consists of the
sequence of visible actions executed since the start of the system. (Note therefore
that λ does not appear in the trace.) At system start, the trace is empty. If T

denotes the current trace and action ρ can be executed, then T.ρ denotes the
trace just after executing ρ.

eb
3 processes can be combined with classical process algebra operators such

as the sequence “E1.E2” (T2, T3), the choice “E1 |E2” (T4) and the Kleene clo-
sure “E0

∗” (T5, T6). Rules (T7 to T9) define parallel composition “E1 |[∆]|E2”
of E1, E2 with synchronization on ∆ ⊆ Lab. The condition “in (ρ, ∆)” is true iff
the label of ρ belongs to ∆. The symmetric rules for choice and parallel com-
position have been omitted for brevity. Expressions “E1 |||E2” and “E1 ||E2”
are equivalent respectively to “E1 |[∅]|E2” and “E1 |[Lab]|E2”.

The guarded expression process “C ⇒ E0” (T10) can execute E0 if the
Boolean condition C holds, which is denoted by the side condition “‖C‖”. Since
C may contain calls to attribute functions, its evaluation depends on the trace
obtained up to the moment when the condition is evaluated. Note that the eval-
uation of the guard C and the execution of the first action ρ in E0 are simulta-
neous, i.e., no action is allowed in concurrent processes in the meantime. We call
this property the guard-action atomicity. This property is essential for consis-
tency as, by side effects, the occurrence of actions in concurrent processes could
implicitly change the value of C before the guarded action has been executed.

4

Quantification is permitted for choice and parallel composition. If V is a set of
expressions {v1, . . . , vn}, “|x :V :E0” and “|[∆]|x :V :E0” stand respectively for
“E0[x := v1] | . . . |E0[x := vn]” and “E0[x := v1] |[∆]| . . . |[∆]|E0[x := vn]”,
where “E[x := v]” denotes the replacement of all occurrences of x by v in E. For
instance, “||x :{1, 2, 3} :a (x)” stands for “a (1) || a (2) || a (3)”. At last, named
processes can be instantiated as usual (T11). Given an eb

3 process expression
E, we write vars (E) for the set of variables occurring free in E.

Attribute functions. Attribute function definitions are denoted by the symbol
A in the grammar of Figure 1. Attribute functions are defined recursively on
the current trace T representing the history of actions executed, with the aid
of functions last (T) which denotes the last action of the trace, and front (T)
which denotes the trace without its last action. The symbol ⊥ represents the
undefined value. In particular, both last (T) and front (T) match ⊥ when the
trace is empty. The symbol (wildcard) matches all actions not matched by any
of the preceding action patterns α1 (x1), . . . , αq (xq). Each vi (i ∈ 0..n) is an
expression of the same type as f ’s return type built over the variables y ∪ xi.

For defining formal semantics for attribute functions, the rule system of Fig-
ure 2 has to be expanded with trace and memory contexts for each process,
representing the sequence of actions executed since the process was initiated,
and the value of attribute functions for the current trace and any value for the
rest of their arguments, stored into process memory M. Due to space limitations,
we do not present the formal semantics here, but show how attribute functions
are evaluated on a concrete example. The formal trace-memory semantics for
attribute functions can be found in the companion paper [20].

Example. We give an example of how the trace-memory semantics work for a sim-
plified library management system, whose specification (processes and attribute
functions) in eb

3 is given in Figure 3. Process main is the parallel interleaving
between m instances of process book and p instances of process member . Process
book stands for a book acquisition followed by its eventual discard. The attribute
function “borrower (T, bId)” looks for actions of the form “Lend (mId , bId)” or
“Return (bId)” in the trace and returns the current borrower of book bId or ⊥
if the book is not lent. In process book, action “Discard (bId)” is thus guarded
to guarantee that book bId cannot be discarded if it is currently lent. How the
use of attribute functions enhances expressiveness in the eb

3 specification of
Figure 3 is discussed in [20].

We illustrate how the eb
3 specification describing the library management

system is evaluated. The idea lies in the observation that attribute functions can
be turned into state variables (the memory M) carrying the effect of the system
trace on their corresponding values. This avoids keeping the (ever-growing) trace
leading to a finite state model. If f (T, x1 :T1, . . . , xl :Tl) is an attribute function,
we construct |T1| × . . . × |Tl| state variables, where |Ti| (i ∈ 1..l) stands for Ti’s
cardinality.

As an example, we set m = p = NbLoans = 2, i.e. we consider two books
b1 and b2, and two members m1 and m2. The memory has four cells: M =

5

BID = {b1, . . . , bm},MID = {m1, . . . , mp}
book (bId : BID) =

Acquire (bId) . (borrower (T, bId) = ⊥) ⇒ Discard (bId)

loan (mId : MID, bId : BID) =
(borrower (T, bId) = ⊥) ∧ (nbLoans (T, mId) < NbLoans) ⇒

Lend (bId , mId) . Return (bId)

member (mId : MID) =
Register (mId) . (|||bId : BID : loan (mId , bId)∗) . Unregister (mId)

main =
(|||bId : BID : book (bId)∗) ||| (|||mId : MID : member (mId)∗)

nbLoans (T : T ,mId : MID) : Nat⊥ = borrower (T : T , bId : BID) : MID⊥ =
match last (T) with match last (T) with

⊥ : ⊥ ⊥ : ⊥
| Lend (bId ,mId) : | Lend (bId ,mId) : mId

nbLoans (front (T),mId) + 1 | Return (bId) : ⊥
| Register (mId) : 0 | : borrower (front (T), bId)
| Unregister (mId) : ⊥ end match

| Return (bId) :
if mId = borrower (T, bId) then

nbLoans (front (T),mId) − 1
else nbLoans (front (T),mId) end if

| : nbLoans (front (T),mId)
end match

Fig. 3. eb
3 specification of a library management system

(borrower[b1], borrower[b2],nbLoans[m1],nbLoans[m2]). The first two cells
keep the two values of the attribute function borrower (T, •) for a given trace
T, and the last two keep the values of nbLoans (T, •). After every step, the new
value of each cell can be calculated from the previous memory and the action
that has just been executed. The memory is initially set to (⊥,⊥,⊥,⊥). Af-
ter the trace “Acquire (b1).Acquire (b2).Register (m1).Register (m2)” the mem-
ory contains (⊥,⊥, 0, 0). If action “Lend (b1, m1)” is then executed, the new
memory is (m1,⊥, 1, 0). For instance, the new value m1 for borrower[b1] is ob-
tained from the rule “Lend (bId ,mId) : mId” in the definition of the attribute
function borrower (see Fig. 3), and the new value 1 for nbLoans[m1] by the
rule “Lend (bId ,mId) : nbLoans (front (T),mId) + 1” of the attribute function
nbLoans , where the value of nbLoans (front (T), m1) corresponds to the value of
nbLoans[m1] in the previous memory state (value 0).

3 The Language LNT

LNT aims at providing the best features of imperative and functional program-
ming languages and value-passing process algebras. It has a user friendly syntax
and formal operational semantics defined in terms of labeled transition systems

6

B ::= stop | null | G (O1, . . . , On) where E | B1; B2

| if E then B1 else B2 end if | var x :T in B end var | x := E |
| loop L in B end loop | break L | select B1 [] . . . [] Bn end select

| par G1, . . . , Gn in B1 || . . . ||Bn end par | P[G1, . . . , Gn] (E1, . . . , En)

O ::= !E | ?x

Fig. 4. LNT syntax (limited to the fragment used in this paper)

(LTSs). LNT is supported by the LNT.OPEN tool of CADP, which allows the
on-the-fly exploration of the LTS corresponding to an LNT specification.

We present the fragment of LNT that serves as the target of our transla-
tion. Its syntax is given in Figure 4. LNT terms denoted by B are built from
actions, choice (select), conditional (if), sequential composition (;), breakable
loop (loop and break) and parallel composition (par). Communication is car-
ried out by rendezvous on gates, written G, G1, . . . , Gn, and may be guarded
using Boolean conditions on the received values (where clause). LNT allows
multiway rendezvous with bidirectional (send/receive) value exchange on the
same gate occurrence, each offer O being either a send offer (!) or a receive offer
(?), independently of the other offers. Expressions E are built from variables,
type constructors, function applications and constants. Labels L identify loops,
which can be escaped using “break L” from inside the loop body. Processes are
parameterized by gates and data variables. LNT semantics are formally defined
in SOS style in [7].

4 Translation from EB3 to LNT

Principles. Our translation of eb
3 relies on the trace-memory semantics. Thus,

we explicitly model in LNT a memory, which stores the state variables corre-
sponding to attribute functions (we call these variables attribute variables) and
is modified each time an action is executed.

Assuming n attribute functions f1, . . . , fn, we model the memory as a pro-
cess M placed in parallel with the rest of the system (a common approach for
modeling global variables in process algebras), which manages for each attribute
function fi an attribute variable (also named fi) that encodes the function. To
read the values of these attribute variables (i.e., to evaluate the attribute func-
tions), processes need to communicate with the memory M , and every action
must have an immediate effect on the memory (so as to reflect the immediate
effect on the execution trace). To achieve this, the memory process synchronizes
with the rest of the system on every possible action of the system (including λ,
to which we associate an LNT gate also written λ in abstract syntax for con-
venience), and updates its attribute variables accordingly. The list of attribute
variables f = (f1, . . . , fn) is added as a supplementary offer on each eb

3 action
α (v), so that attribute variables can be directly accessed to evaluate the guard
associated to the action, wherever needed, while guaranteeing the guard-action

7

atomicity. Therefore, every action α (v) will be encoded in LNT as α (!v, ?f),
and synchronized with an action of the form α (?x, !f) in the memory process
M , thus taking benefit of bidirectional value exchange during the rendezvous.

Translation of attribute functions. To formalize the translation, we assume Lab =
{α1, . . . , αq} (not including λ), each αj has formal parameters xj , {f1, . . . , fn}
is the set of attribute functions, and each fi is uniquely defined by the set of
formal parameters yi and the set of data expressions w0

i , . . . , w
q
i , such that:

fi (T, yi) = match last (T) with ⊥ : w0
i |α1 (x1) : w1

i | . . . |αq (xq) : w
q
i

We also assume that the attribute functions are ordered, so that for all h ∈
1..n, i ∈ 1..n, j ∈ 1..q, every function call of the form fh (T, . . .) occurring in w

j
i

satisfies h < i and every call of the form fh (front (T), . . .) satisfies h ≥ i. Such
an ordering can be constructed if the eb

3 specification does not contain circular
dependencies between function calls, which would potentially lead to infinite at-
tribute function evaluation. In particular, the definition of an attribute function
fi cannot contain recursive calls of the form “fi (T, . . .)”, but only recursive calls
of the form “fi (front (T), . . .)”. Note that this does not limit the expressiveness
of eb

3 attribute functions, because every recursive computation on data expres-
sions only (which keeps the trace unchanged) can be described using standard
functions and not attribute functions.

Ordering attribute functions in this way allows the memory to be updated
consistently, from f1 to fn in turn. At every instant, already-updated values
correspond to calls of the form fh (T, . . .) (the value of fh on the current trace),
whereas calls of the form fh (front (T), . . .) are replaced by accesses to a copy
f ′ of the memory f , which was made before starting the update. This encoding
thus enables the trace parameter to be discharged from function calls, ensuring
that while updating fi, accesses to fh with h < i necessarily correspond to calls
with parameter T.

Process M is defined in Figure 5. It runs an infinite loop, which “listens” to
all possible actions αj of the system. Each attribute variable fi is an array with
li dimensions, where li is the arity of the attribute function fi minus 1 (because
the trace parameter is now discharged). Each dimension of the array fi thus
corresponds to one formal parameter in yi, so that fi[ord (v1)] . . . [ord (vli)]
encodes the current value of fi (T, v1, . . . , vli), where ord (v) is a predefined LNT
function that denotes the ordinate of value v, i.e., a unique number between
1 and the cardinal of v’s type. For each type T we assume the existence of
functions firstT that returns the first element of type T , lastT that returns the
last element of type T , and nextT (x) that returns the successor of x in type T

(following the total order induced by ord). Such functions are available in LNT
for all finite types. Function mod transforms an expression E by syntactically
replacing function calls by array accesses, while discharging the trace parameter
as explained above.

Upon synchronisation on action αj (?xj , !f) with the LNT process corre-
sponding to eb

3’s main process (see translation of processes below), the values
of all attribute variables fi (i ∈ 1..n) are updated using function upd

j
i .

8

process M [α1, . . . , αq , λ : any] is

var f, f ′ : type (f),
y1 : type (y1), . . . , yn : type (yn), x1 : type (x1), . . . , xq : type (xq) in

upd0

1; . . . ; upd0

n;
loop

f ′ := f (* f ′

i[ord (v)] will encode fi (front (T), v) during memory update *)

select

α1 (?x1, !f); upd1

1; . . . ; upd1

n

[] . . . []

αq (?xq, !f); upd
q
1; . . . ; updq

n

[] λ (!f)
end select

end loop

end var

end process

upd
j
i

.
= enum (yi, fi[ord (yi)] := mod (wj

i))
enum ([], B)

.
= B

enum (x :: y, B)
.
= x := firstT ;

loop Lx in

enum (y, B)
if x 6= lastT then x := nextT (x) else break Lx end if

end loop where T = type (x)
v[ord (y)]

.
= v[ord (y1)] . . . [ord (yl)], ?y = (?y1, . . . , ?yl), where y = (y1, . . . , yl)

mod (E)
.
= E [fi (T, vi) := fi[ord (vi)], fi (front (T), vi) := f ′

i[ord (vi)] | i ∈ 1..n]

Fig. 5. LNT code for the memory process implementing attribute functions

Translation of processes. We define a translation function t from an eb
3 process

expression to an LNT process. Most eb
3 constructs are process algebra con-

structs with a direct correspondence in LNT. The main difficulty arises in the
translation of guarded process expressions of the form “C ⇒ E0” in a way that
guarantees the guard-action atomicity. This led us to consider a second param-
eter for the translation function t, namely the condition C, whose evaluation is
delayed until the first action occurring in the process expression E0. The defini-
tion of t (E, C) is given in Figure 6. An eb

3 specification E0 will then be trans-
lated into “par α1, . . . , αq, λ in t (E0, true) || M [α1, . . . , αq, λ] end par” and
every process definition of the form “P (x) = E” will be translated into the pro-
cess “process P [α1, . . . , αq, λ : any] (x : type (x)) is t (E, true) end process”,
where {α1, . . . , αq} = Lab. The rules of Figure 6 can be commented as follows:

– Rule (1) translates the λ action. Note that λ cannot be translated to the
empty LNT statement null, because execution of λ may depend on a guard
C, whose evaluation requires the memory to be read, so as to get attribute
variable values. This is done by the LNT communication action λ (?f). The
guard C is evaluated after replacing calls to attribute functions (all of which
have the form fi (T, vi)) by the appropriate attribute variables, using func-
tion mod defined in Figure 5. Rule (2) is similar but handles visible actions.

9

t (λ,C) = λ (?f) where mod (C) (1)

t (α (v), C) = α (v, ?f) where mod (C) (2)

t (E1.E2, C) = t (E1, C); t (E2, true) (3)

t (C′ ⇒ E0, C) = t (E0, C andthen C′) (4)

t (E1 |E2, C) = select t (E1, C) [] t (E2, C) end select (5)

t (|x : V :E0, C) = var x := any V ; t (E0, C) end var (6)

t (E0
∗, true) = loop LE0

in

select

λ (?f); break LE0
[] t (E0, true)

end select

end loop (7)

t (E1 |[∆]|E2, true) = par ∆ in t (E1, true) || t (E2, true) end par (8)

t (|[∆]|x :V :E0, true) = par ∆ in E0[x := v1] || . . . ||E0[x := vn] end par

where V = {v1, . . . , vn} (9)

t (P (v), true) = P [α1, . . . , αq, λ] (v) (10)

In all other cases:

t (E0, C) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

if mod (C) then t (E0, true) else stop end if

if C does not use attribute functions

par α1, . . . , αq , λ in

t (E0, true)
|| prC [α1, . . . , αq , λ] (vars (C))
end par otherwise

(11)

Fig. 6. Translation from eb
3 process to LNT process

– Rule (3) translates eb
3 sequential composition into LNT sequential compo-

sition, passing the evaluation of C to the first process expression.

– Rule (4) makes a conjunction between the guard of the current process ex-
pression with the guard already accumulated from the context.

– Rules (5) and (6) translate the choice and quantified choice operators of eb
3

into their direct LNT counterpart.

– Rule (7) translates the Kleene closure into a combination of LNT loop and
select, following the identity E0

∗ = λ |E0.E0
∗.

– Rule (8) translates eb
3 parallel composition into LNT parallel composition.

– Rule (9) translates eb
3 quantified parallel composition into LNT parallel

composition by expanding the type V of the quantification variable, since
LNT does not have a quantified parallel composition operator.

– Rule (10) translates an eb
3 process call into the corresponding LNT process

call, which requires gates to be passed as parameters.

– Rules (7) to (10) only apply when the guard C is trivially true. In the other
cases, we must apply rule (11), which generates code implementing the guard.
If C does not use attribute functions, i.e., does not depend on the trace, then
it can be evaluated immediately without communicating with the memory

10

process (first case). Otherwise, the guard evaluation must be delayed until
the first action of the process expression E0. When E0 is either a Kleene
closure, a parallel composition, or a process call, identifying its first action
syntactically is not obvious. One solution would consist in expanding E0

into a choice in which every branch has a fixed initial action3, to which the
guard would be added. We preferred an alternative solution that avoids the
potential combinatorial explosion of code due to static expansion. A process
prC (defined in Fig. 7) is placed in parallel to t (E0, true) and both processes
synchronize on all actions. Process prC imposes on t (E0, true) the constraint
that the first executed action must satisfy the condition C (then branch).
For subsequent actions, the condition is relaxed (else branch).

The following example illustrates and justifies the use of process prC as
a means to solve the guard-action atomicity problem. Consider the eb

3 sys-
tem “C ⇒ Lend (b1, m1) ||| Return (b2)”, where C denotes the Boolean con-
dition “borrower (T, b1) = ⊥ ∧ nbLoans (T, m1) < NbLoans” and Lab =
{Lend ,Return}. The LNT code corresponding to this system is the following:

par Lend ,Return, λ in

par Lend ,Return, λ in

par Lend (b1, m1, ?f) || Return (b2, ?f) end par

|| prC [Lend ,Return, λ] (b1, m1)
end par

|| M [Lend ,Return, λ]

end par

The first action executed by this system may be either Lend or Return. We
consider the case where Lend is executed first. According to the LNT semantics,
it results from the multiway synchronization of the following three actions:

– “Lend (b1, m1, ?f)” in the above expression,

– “Lend (?b, ?m, ?f) where borrower [ord(b1)] = ⊥ ∧ nbLoans [ord(m1)] <

NbLoans” in process prC (at this moment, start is true, see Fig. 7), and

– “Lend (?b, ?m, !f)” in process M (see Fig. 5).

Thus, in prC at synchronization time, f is an up-to-date copy of the memory
stored in M , b = b1, and m = m1. The only condition for the synchronization to
occur is the guard mod (C), whose value is computed using the up-to-date copy f

of the memory. In case mod (C) evaluates to true, no other action (susceptible to
modifying f) can occur between the evaluation of mod (C) and the occurrence of
Lend as both happen synchronously, thus achieving the guard-action atomicity.
Once Lend has occurred, Return can occur without any condition, as the value
of start has now become false.

3 Such a form, commonly called head normal form [3], is used principally in the context
of the process algebra ACP [4] to analyse the behaviour of recursive processes.

11

process prC [α1, . . . , αq , λ : any] (vars (C) : type (vars (C))) is

var start : bool, x1 : type (x1), . . . , xq : type (xq) in

start := true;
loop L in select

if start then

start := false;
select

α1 (?x1, ?f) where mod (C)
[] . . . []

αq (?xq, ?f) where mod (C)
[]

λ (?f) where mod (C)
end select

else

select

α1 (?x1, ?f)
[] . . . []

αq (?xq, ?f)
[]

λ (?f)
end select

end if

[] break L end select end loop

end var

end process

Fig. 7. Process prC

Theorem 1. Let E, E′ be eb
3 process expressions, T be the current trace, f be

the set of attribute functions, and ρ ∈ Act. Then E
ρ (x)−−−→ E′ if and only if:

t (E, true)
ρ (x,f)−−−−→ t (E′, true) ∧ (∀fi ∈ f) (∀v) fi (T, v) = fi[ord(v)].

The proof strategy for Theorem 1 relies on the existence of a bisimulation be-
tween each eb

3 specification and its corresponding LNT translation. It works by
providing a match between the reduction rules of eb

3 [20] and the corresponding
LNT rules [7].

We developed an automatic translator tool from eb
3 specifications to LNT,

named eb
32lnt, implemented using the Ocaml Lex/Yacc compiler construction

technology. It consists of about 900 lines of OCaml code. We applied eb
32lnt

on a benchmark of eb
3 specifications, which includes variations of the library

management system (examined in its simplest version in Section 2) and a bank
account management system.

We noticed that, for each eb
3 specification, the code size of the equivalent

LNT specification is twice as big. Part of this expansion is caused by the fact
that LNT is more structured than eb

3: LNT requires more keywords and gates

12

have to be declared and passed as parameters to each process call. By looking
at the rules of Figure 6, we can see that the other causes of expansion are
rule (5), which duplicates the condition C, and rule (9), which duplicates the
body E0 of the quantified parallel composition operator “|[∆]|x : V : E0” as
many times as there are elements in the set V . Both expansions are linear in the
size of the source eb

3 code. However, in the case of a nested parallel composition
“|[∆1]|x1 : V1 : . . . |[∆n]|xn : Vn : E0”, the expansion factor is as high as the
product of the number of elements in the respective sets V1, . . . , Vn, which may
be large. If E0 is a big process expression, the expansion can be limited by
encapsulating E0 in a parameterized process “PE0

(x1, . . . , xn)” and replacing
duplicated occurrences of E0 by appropriate instances of PE0

.

5 Case Study

We illustrate below the application of the eb
32lnt translator in conjunction

with CADP for analyzing an extended version of the IS library management
system, whose description in eb

3 can be found in Annex C of [12]. With respect
to the simplified version presented in Section 2, the IS enables e.g., members to
renew their loans and to reserve books, and their reservations to be cancelled or
transferred to other members on demand. The desired behaviour of this IS was
characterized in [9] as a set of 15 requirements expressed informally as follows:

R1. A book can always be acquired by the library when it is not currently acquired.
R2. A book cannot be acquired by the library if it is already acquired.
R3. An acquired book can be discarded only if it is neither borrowed nor reserved.
R4. A person must be a member of the library in order to borrow a book.
R5. A book can be reserved only if it has been borrowed or already reserved by some

member.
R6. A book cannot be reserved by the member who is borrowing it.
R7. A book cannot be reserved by a member who is reserving it.
R8. A book cannot be lent to a member if it is reserved.
R9. A member cannot renew a loan or give the book to another member if the book

is reserved.
R10. A member is allowed to take a reserved book only if he owns the oldest reservation.
R11. A book can be taken only if it is not borrowed.
R12. A member who has reserved a book can cancel the reservation at anytime before

he takes it.
R13. A member can relinquish library membership only when all his loans have been

returned and all his reservations have either been used or cancelled.
R14. Ultimately, there is always a procedure that enables a member to leave the library.
R15. A member cannot borrow more than the loan limit defined at the system level for

all users.

We expressed all the above requirements using the property specification lan-
guage MCL [18]. MCL is an extension of the alternation-free modal µ-calculus [8]
with action predicates enabling value extraction, modalities containing extended
regular expressions on transition sequences, quantified variables and parame-
terized fixed point operators, programming language constructs, and fairness

13

operators encoding generalized Büchi automata. These features make possible
a concise and intuitive description of safety, liveness, and fairness properties
involving data, without sacrificing the efficiency of on-the-fly model checking,
which has a linear-time complexity for the dataless MCL formulas [18].

We show below the MCL formulation of two requirements from the list above,
which denote typical safety and liveness properties. Requirement R2 is expressed
in MCL as follows:

[true∗.{ACQUIRE ?B : string}.(not {DISCARD !B})∗.{ACQUIRE !B}] false

This formula uses the standard safety pattern “[β] false”, which forbids the
existence of transition sequences matching the regular formula β. Here the un-
desirable sequences are those containing two Acquire operations for the same
book B without a Discard operation for B in the meantime. The regular formula
true∗ matches a subsequence of (zero or more) transitions labeled by arbitrary
actions. Note the use of the construct “?B : string”, which matches any string
and extracts its value in the variable B used later in the formula. Therefore, the
above formula captures all occurrences of books carried by Acquire operations
in the model. Requirement R12 is formulated in MCL as follows:

[true∗.{RESERVE ?M : string ?B : string}.
(not ({TAKE !M !B} or {TRANSFER !M !B}))∗]
〈 (not ({TAKE !M !B} or {TRANSFER !M !B}))∗. {CANCEL !M !B} 〉 true

This formula denotes a liveness property of the form “[β1] 〈β2〉 true”, which
states that every transition sequence matching the regular formula β1 (in this
case, book B has been reserved by member M and subsequently neither taken
nor transferred) ends in a state from which there exists a transition sequence
matching the regular formula β2 (in this case, the reservation can be cancelled
before being taken or transferred).

Using eb
32lnt, we translated the eb

3 specification of the library manage-
ment system to LNT. The resulting specification was checked against all the 15
requirements, formulated in MCL, using the EVALUATOR 4.0 model checker
of CADP. The experiments were performed on an Intel(R) Core(TM) i7 CPU
880 at 3.07GHz. Table 1 shows the results for several configurations of the IS,
obtained by instantiating the number of books (m) and members (p) in the IS.
All requirements were shown to be valid on the IS specification. The second and
third line of the table indicate the number of states and transitions of the LTS
corresponding to the LNT specification. The fourth line gives the time needed to
generate the LTS and the other lines give the verification time for each require-
ment. Note that the number of states generated increases with the size of m and
p as EVALUATOR 4.0 applies explicit techniques for state space generation.

6 Conclusion

We proposed an approach for equipping the eb
3 method with formal verifi-

cation capabilities by reusing already available model checking technology. Our

14

Table 1. Model checking results for the library management system

(m,p) (3,2) (3,3) (3,4) (4,3)

states 1,002 182,266 8,269,754 27,204,016

trans. 5,732 1,782,348 105,481,364 330,988,232

time 1.9s 14.4s 31’39s 140’22s

R1 0.3s 1.8s 5’19s 20’13s

R2 0.2s 2.9s 9’26s 36’7s

R3 0.2s 9.4s 97’46s 26’47s

R4 0.2s 1.7s 5’15s 18’40s

R5 0.2s 2.2s 6’46s 21’52s

R6 0.2s 4.1s 38’30s 10’19s

R7 0.2s 7.4s 65’22s 24’33s

R8 0.2s 2.2s 6’52s 22’27s

R9 0.2s 2.3s 6’38s 22’29s

R10 0.3s 13.3s 43’59s 62’07s

R11 0.3s 2.5s 6’36s 22’14s

R12 0.3s 4.0s 10’47s 45’09s

R13 0.4s 4.3s 11’46s 1’07s

R14 0.3s 3.6s 10’41s 37’33s

R15 0.2s 2.8s 7’53s 28’56s

approach relies upon a new translation from eb
3 to LNT, which provides a direct

connection to all the state-of-the-art verification features of the CADP toolbox.
The translation, based on alternative memory semantics of eb

3 [20] instead of
the original trace semantics [10], was automated by the eb

32lnt translator and
validated on several examples of typical ISs. So far, we experimented only the
model checking of MCL data-based temporal properties on eb

3 specifications.
However, CADP also provides extensive support for equivalence checking and
compositional LTS construction, which can be of interest to IS designers.

As future work, we plan to provide a formal proof of the translation from
eb

3 to LNT, which could serve as reference for translating eb
3 to other pro-

cess algebras as well. We also plan to study abstraction techniques for verifying
properties regardless of the number of entity instances that participate in the
IS, following the approaches for parameterized model checking [1]. In particular,
we will observe how the insertion of new functionalities into an IS affects this
issue, and we will formalize this in the context of eb

3 specifications.

References

1. P.A. Abdulla, A. Bouajjani, B. Jonsson, M. Nilsson. Handling Global Conditions in
Parameterized System Verification. In Proc. CAV, LNCS vol. 1633, pages 134–145,
Springer, 1999.

2. J.-R. Abrial. The B-Book - Assigning programs to meanings. Cambridge University
Press, 2005.

3. J.A. Bergstra, A. Ponse, S.A. Smolka. Handbook of Process Algebra. Elsevier, 2001.

15

4. J.A. Bergstra, J. W. Klop. Algebra of Communicating Processes with Abstraction.
TCS, 37:77–121, 1985.

5. R. Chossart. Évaluation d’outils de vérification pour les spécifications de systèmes
d’information. Master’s thesis, Université de Sherbrooke, 2010.

6. ClearSy. Atelier B. http://www.atelierb.societe.com.
7. D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, C. McKinty, V. Powazny, F.

Lang, W. Serwe, G. Smeding. Reference Manual of the LOTOS NT to LOTOS

Translator – Version 5.4. INRIA/VASY, 2011.
8. E. Allen Emerson, C-L. Lei. Efficient Model Checking in Fragments of the Propo-

sitional Mu-Calculus. In Proc. of LICS, pages 267–278, 1986.
9. M. Frappier, B. Fraikin, R. Chossart, R. Chane-Yack-Fa, M. Ouenzar. Compari-

son of model checking tools for information systems. In Proc. of ICFEM, LNCS
vol. 6447, pages 581–596, Springer, 2010.

10. M. Frappier, R. St.-Denis. eb
3: an entity-based black-box specification method for

information systems. Software and System Modeling 2(2):134–149, Springer, 2003.
11. H. Garavel, F. Lang, R. Mateescu, W. Serwe. CADP 2010: A toolbox for the

construction and analysis of distributed processes. In Proc. of TACAS, LNCS
vol. 6605, pages 372–387, Springer, 2011.

12. F. Gervais. Combinaison de spécifications formelles pour la modélisation des

systèmes d’information. PhD thesis, Université de Sherbrooke, 2006.
13. F. Gervais, M. Frappier, R. Laleau. Synthesizing B Specifications from eb

3 At-
tribute Definitions. In Proc. of iFM, LNCS vol. 3771, pages 207–226 Springer,
2005.

14. F. Gervais, M. Frappier, R. Laleau. Refinement of eb
3 Process Patterns into B

Specifications. In Proc. of Formal Specification and Development in B, LNCS
vol. 4355, pages 201–215, Springer, 2006.

15. C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM, 21(8):666–
677, 1978.

16. ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard number
15437:2001, International Organization for Standardization — Information Tech-
nology, Genève, 2001.

17. M. E. Jiague, M. Frappier, F. Gervais, P. Konopacki, R. Laleau, J. Milhau, R.
St-Denis. Model-Driven Engineering of Functional Security Policies. In Proc. of

ICEIS, pages 374-379, 2010.
18. R. Mateescu, D. Thivolle. A model checking language for concurrent value-passing

systems. In Proc. of FM, LNCS vol. 5014, pages 148–164, Springer, 2008.
19. J. Milhau, A. Idani, R. Laleau, M.A. Labiadh, Y. Ledru, M. Frappier. Combining

UML, ASTD and B for the formal specification of an access control filter. In
Journal of Innovations in Systems and Software Engineering, vol. 7, pages 303-
313, Springer, 2011.

20. D. Vekris, C. Dima. Efficient Operational Semantics for eb
3 for Verification of

Temporal Properties. In Proc. of FSEN, Springer, 2013, to appear.

16

