Abstract
This paper introduces a solution for detecting humans in smart spaces through computer vision. The approach is valid both for images in visible and infrared spectra. Histogram of oriented gradients (HOG) is used for feature extraction in the human detection process, whilst linear support vector machines (SVM) are used for human classification. A set of tests is conducted to find the classifiers which optimize recall in the detection of persons in visible video sequences. Then, the same classifiers are used to detect people in infrared video sequences obtaining excellent results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Delgado, A.E., López, M.T., Fernández-Caballero, A.: Real-time motion detection by lateral inhibition in accumulative computation. Engineering Applications of Artificial Intelligence 23(1), 129–139 (2010)
Fernández-Caballero, A., López, M.T., Castillo, J.C., Maldonado-Bascón, S.: Real-time accumulative computation motion detectors. Sensors 9(12), 10044–10065 (2009)
Chaquet, J.M., Carmona, E.J., Fernández-Caballero, A.: A survey of video datasets for human action and activity recognition. Computer Vision and Image Understanding (2013), http://dx.doi.org/10.1016/j.cviu.2013.01.013
Moreno-Garcia, J., Rodriguez-Benitez, L., Fernández-Caballero, A., López, M.T.: Video sequence motion tracking by fuzzification techniques. Applied Soft Computing 10(1), 318–331 (2010)
López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Visual surveillance by dynamic visual attention method. Pattern Recognition 39(11), 2194–2211 (2006)
Fernández-Caballero, A., Mira, J., Fernández, M.A., López, M.T.: Segmentation from motion of non-rigid objects by neuronal lateral interaction. Pattern Recognition Letters 22(14), 1517–1524 (2001)
Fernández-Caballero, A., Castillo, J.C., Serrano-Cuerda, J., Maldonado-Bascón, S.: Real-time human segmentation in infrared videos. Expert Systems with Applications 38(3), 2577–2584 (2011)
Fernández-Caballero, A., Castillo, J.C., Martínez-Cantos, J., Martínez-Tomás, R.: Optical flow or image subtraction in human detection from infrared camera on mobile robot. Robotics and Autonomous Systems 58(12), 1273–1281 (2010)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893 (2005)
Meysam, S., Farsi, H.: A robust method applied to human detection. International Journal of Computer Theory and Engineering 2(5), 692–694 (2010)
Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion handling. In: IEEE International Conference on Computer Vision, ICCV 2009, pp. 32–39 (2009)
Zhu, Q., Yeh, M.C., Cheng, K.T., Avidan, S.: Fast human detection using a cascade of histograms of oriented gradients. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2006, vol. 2, pp. 1491–1498 (2006)
Marin, J., Vazquez, D., Geronimo, D., Lopez, A.M.: Learning appearance in virtual scenarios for pedestrian detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, pp. 137–144 (2010)
Zhang, L., Wu, B., Nevatia, R.: Pedestrian detection in infrared images based on local shape features. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (2007)
Suard, F., Rakotomamonjy, A., Bensrhair, A., Broggi, A.: Pedestrian detection using infrared images and histograms of oriented gradients. In: IEEE Intelligent Vehicles Symposium, IVS 2006, pp. 206–212 (2006)
Bertozzi, M., Broggi, A., Grisleri, P., Graf, T., Meinecke, M.: Pedestrian detection in infrared images. In: IEEE Intelligent Vehicles Symposium, IV 2003, vol. 3, pp. 662–667 (2003)
Dong, J., Ge, J., Luo, Y.: Nighttime pedestrian detection with near infrared using cascaded classifiers. In: IEEE International Conference on Image Processing, ICIP 2007, vol. 6, pp. 185–188 (2007)
Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classiers. In: Fifth Annual Workshop on Computational Learning Theory, COLT 1992, pp. 144–152 (1992)
Cortes, C., Vapnik, V.N.: Support-vector networks. Machine Learning 10(3), 273–297 (1995)
Papageorgiou, C., Poggio, T.: A trainable system for object detection. International Journal of Computer Vision 38(1), 15–33 (2000)
Ronfard, R., Schmid, C., Triggs, B.: Learning to parse pictures of people. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 700–714. Springer, Heidelberg (2002)
Lowe, D.G.: Object recognition from local scale-invariant features. In: IEEE International Conference on Computer Vision, ICCV 1999, vol. 2, pp. 1150–1157 (1999)
Chang, C.C., Lin, C.J.: LibSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), 1–27 (2011)
Keerthi, S.S., Sundararajan, S., Chang, K.W., Hsieh, C., Lin, C.J.: A sequential dual method for large scale multi-class linear SVMs. In: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 408–416 (2008)
Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LibLINEAR: a library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tribaldos, P., Serrano-Cuerda, J., López, M.T., Fernández-Caballero, A., López-Sastre, R.J. (2013). People Detection in Color and Infrared Video Using HOG and Linear SVM. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds) Natural and Artificial Computation in Engineering and Medical Applications. IWINAC 2013. Lecture Notes in Computer Science, vol 7931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38622-0_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-38622-0_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38621-3
Online ISBN: 978-3-642-38622-0
eBook Packages: Computer ScienceComputer Science (R0)