Skip to main content

People Detection in Color and Infrared Video Using HOG and Linear SVM

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7931))

Abstract

This paper introduces a solution for detecting humans in smart spaces through computer vision. The approach is valid both for images in visible and infrared spectra. Histogram of oriented gradients (HOG) is used for feature extraction in the human detection process, whilst linear support vector machines (SVM) are used for human classification. A set of tests is conducted to find the classifiers which optimize recall in the detection of persons in visible video sequences. Then, the same classifiers are used to detect people in infrared video sequences obtaining excellent results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delgado, A.E., López, M.T., Fernández-Caballero, A.: Real-time motion detection by lateral inhibition in accumulative computation. Engineering Applications of Artificial Intelligence 23(1), 129–139 (2010)

    Article  Google Scholar 

  2. Fernández-Caballero, A., López, M.T., Castillo, J.C., Maldonado-Bascón, S.: Real-time accumulative computation motion detectors. Sensors 9(12), 10044–10065 (2009)

    Article  Google Scholar 

  3. Chaquet, J.M., Carmona, E.J., Fernández-Caballero, A.: A survey of video datasets for human action and activity recognition. Computer Vision and Image Understanding (2013), http://dx.doi.org/10.1016/j.cviu.2013.01.013

  4. Moreno-Garcia, J., Rodriguez-Benitez, L., Fernández-Caballero, A., López, M.T.: Video sequence motion tracking by fuzzification techniques. Applied Soft Computing 10(1), 318–331 (2010)

    Article  Google Scholar 

  5. López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Visual surveillance by dynamic visual attention method. Pattern Recognition 39(11), 2194–2211 (2006)

    Article  Google Scholar 

  6. Fernández-Caballero, A., Mira, J., Fernández, M.A., López, M.T.: Segmentation from motion of non-rigid objects by neuronal lateral interaction. Pattern Recognition Letters 22(14), 1517–1524 (2001)

    Article  MATH  Google Scholar 

  7. Fernández-Caballero, A., Castillo, J.C., Serrano-Cuerda, J., Maldonado-Bascón, S.: Real-time human segmentation in infrared videos. Expert Systems with Applications 38(3), 2577–2584 (2011)

    Article  Google Scholar 

  8. Fernández-Caballero, A., Castillo, J.C., Martínez-Cantos, J., Martínez-Tomás, R.: Optical flow or image subtraction in human detection from infrared camera on mobile robot. Robotics and Autonomous Systems 58(12), 1273–1281 (2010)

    Article  Google Scholar 

  9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  10. Meysam, S., Farsi, H.: A robust method applied to human detection. International Journal of Computer Theory and Engineering 2(5), 692–694 (2010)

    Google Scholar 

  11. Wang, X., Han, T.X., Yan, S.: An HOG-LBP human detector with partial occlusion handling. In: IEEE International Conference on Computer Vision, ICCV 2009, pp. 32–39 (2009)

    Google Scholar 

  12. Zhu, Q., Yeh, M.C., Cheng, K.T., Avidan, S.: Fast human detection using a cascade of histograms of oriented gradients. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2006, vol. 2, pp. 1491–1498 (2006)

    Google Scholar 

  13. Marin, J., Vazquez, D., Geronimo, D., Lopez, A.M.: Learning appearance in virtual scenarios for pedestrian detection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2010, pp. 137–144 (2010)

    Google Scholar 

  14. Zhang, L., Wu, B., Nevatia, R.: Pedestrian detection in infrared images based on local shape features. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (2007)

    Google Scholar 

  15. Suard, F., Rakotomamonjy, A., Bensrhair, A., Broggi, A.: Pedestrian detection using infrared images and histograms of oriented gradients. In: IEEE Intelligent Vehicles Symposium, IVS 2006, pp. 206–212 (2006)

    Google Scholar 

  16. Bertozzi, M., Broggi, A., Grisleri, P., Graf, T., Meinecke, M.: Pedestrian detection in infrared images. In: IEEE Intelligent Vehicles Symposium, IV 2003, vol. 3, pp. 662–667 (2003)

    Google Scholar 

  17. Dong, J., Ge, J., Luo, Y.: Nighttime pedestrian detection with near infrared using cascaded classifiers. In: IEEE International Conference on Image Processing, ICIP 2007, vol. 6, pp. 185–188 (2007)

    Google Scholar 

  18. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classiers. In: Fifth Annual Workshop on Computational Learning Theory, COLT 1992, pp. 144–152 (1992)

    Google Scholar 

  19. Cortes, C., Vapnik, V.N.: Support-vector networks. Machine Learning 10(3), 273–297 (1995)

    Google Scholar 

  20. Papageorgiou, C., Poggio, T.: A trainable system for object detection. International Journal of Computer Vision 38(1), 15–33 (2000)

    Article  MATH  Google Scholar 

  21. Ronfard, R., Schmid, C., Triggs, B.: Learning to parse pictures of people. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV. LNCS, vol. 2353, pp. 700–714. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Lowe, D.G.: Object recognition from local scale-invariant features. In: IEEE International Conference on Computer Vision, ICCV 1999, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  23. Chang, C.C., Lin, C.J.: LibSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), 1–27 (2011)

    Article  Google Scholar 

  24. Keerthi, S.S., Sundararajan, S., Chang, K.W., Hsieh, C., Lin, C.J.: A sequential dual method for large scale multi-class linear SVMs. In: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 408–416 (2008)

    Google Scholar 

  25. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LibLINEAR: a library for large linear classification. Journal of Machine Learning Research 9, 1871–1874 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tribaldos, P., Serrano-Cuerda, J., López, M.T., Fernández-Caballero, A., López-Sastre, R.J. (2013). People Detection in Color and Infrared Video Using HOG and Linear SVM. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds) Natural and Artificial Computation in Engineering and Medical Applications. IWINAC 2013. Lecture Notes in Computer Science, vol 7931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38622-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38622-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38621-3

  • Online ISBN: 978-3-642-38622-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics