Abstract
We address the problem of vehicle detection and tracking for traffic monitoring in Smart City applications. We introduce a novel approach for vehicle tracking by simultaneous detection and viewpoint estimation. An Extended Kalman Filter (EKF) is adapted to describe the vehicle’s motion when not only the pose of the object is measured, but also its viewpoint with respect to the camera. Specifically, we enhance the motion model with observations of the vehicle viewpoint jointly extracted by the detection step. The approach is evaluated on a novel and challenging dataset with different video sequences recorded at urban environments, which is released with the paper. Our experimental validation confirms that the integration of an EKF with both detections and viewpoint estimations results beneficial.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhu, J., Yuan, L., Zheng, Y., Ewing, R.: Stereo visual tracking within structured environments for measuring vehicle speed. IEEE TCSVT 22, 1471–1484 (2012)
Lee, J., Ryoo, M., Riley, M., Aggarwal, J.: Real-time illegal parking detection in outdoor environments using 1-d transformation. IEEE TCSVT 19, 1014–1024 (2009)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)
Leibe, B., Leonardis, A., Schiele, B.: Robust object detection with interleaved categorization and segmentation. IJCV 77(1-3), 259–289 (2008)
Chang, W.C., Cho, C.W.: Online boosting for vehicle detection. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 40, 892–902 (2010)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. PAMI 32, 1627–1645 (2010)
Sudowe, P., Leibe, B.: Efficient use of geometric constraints for sliding-window object detection in video. In: Crowley, J.L., Draper, B.A., Thonnat, M. (eds.) ICVS 2011. LNCS, vol. 6962, pp. 11–20. Springer, Heidelberg (2011)
Thomas, A., Ferrari, V., Leibe, B., Tuytelaars, T., Schiele, B., Van Gool, L.: Towards multi-view object class detection. In: CVPR, vol. 2, pp. 1589–1596 (2006)
Savarese, S., Fei-Fei, L.: 3D generic object categorization, localization and pose estimation. In: ICCV, pp. 1–8 (2007)
Sun, M., Su, H., Savarese, S., Fei-Fei, L.: A multi-view probabilistic model for 3D object classes. In: CVPR (2009)
Lopez-Sastre, R.J., Tuytelaars, T., Savarese, S.: Deformable part models revisited: A performance evaluation for object category pose estimation. In: 1st IEEE Workshop on Challenges and Opportunities in Robot Perception, ICCV 2011 (2011)
Pepik, B., Gehler, P., Stark, M., Schiele, B.: 3D ^ 2PM - 3D deformable part models. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 356–370. Springer, Heidelberg (2012)
Gavrila, D.M., Munder, S.: Multi-cue pedestrian detection and tracking from a moving vehicle. IJCV 73(1), 41–59 (2007)
Leibe, B., Schindler, K., Cornelis, N., Van Gool, L.: Coupled object detection and tracking from static cameras and moving vehicles. PAMI 30(10), 1683–1698 (2008)
Ess, A., Schindler, K., Leibe, B., Van Gool, L.: Object detection and tracking for autonomous navigation in dynamic environments. Int. J. Rob. Res. 29, 1707–1725 (2010)
Welch, G., Bishop, G.: An introduction to the kalman filter. Technical Report TR 95-041, University of North Carolina at Chapel Hill (2006)
Comaniciu, D., Meer, P.: Mean shift analysis and applications. In: ICCV (1999)
Bradsky, G.: Computer vision face tracking for use in a perceptual user interface. Intel Technology Journal, Q2 (1998)
Koller, D., Danilidis, K., Nagel, H.H.: Model-based object tracking in monocular image sequences of road traffic scenes. IJCV 10(3), 257–281 (1993)
Dellaert, F., Thorpe, C.: Robust car tracking using kalman filtering and bayesian templates. In: Intelligent Transportation Systems (1997)
Cameron, S., Proberdt, P.: Advanced guided vehicles, aspects of the oxford agv project. World Scientific, Singapore (1994)
Bradsky, G., Kaehler, A.: Learning OpenCV. Computer Vision with the OpenCV Library. O’Reilly (2008)
Vondrick, C., Patterson, D., Ramanan, D.: Efficiently scaling up crowdsourced video annotation - a set of best practices for high quality, economical video labeling. IJCV 101(1), 184–204 (2013)
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results (2007)
Wang, Q., Chen, F., Xu, W., Yang, M.H.: An experimental comparison of online object tracking algorithms. In: SPIE (2011)
Hoiem, D., Chodpathumwan, Y., Dai, Q.: Diagnosing error in object detectors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 340–353. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guerrero-Gómez-Olmedo, R., López-Sastre, R.J., Maldonado-Bascón, S., Fernández-Caballero, A. (2013). Vehicle Tracking by Simultaneous Detection and Viewpoint Estimation. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds) Natural and Artificial Computation in Engineering and Medical Applications. IWINAC 2013. Lecture Notes in Computer Science, vol 7931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38622-0_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-38622-0_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38621-3
Online ISBN: 978-3-642-38622-0
eBook Packages: Computer ScienceComputer Science (R0)