Abstract
Choosing which fast Nearest Neighbour search algorithm to use depends on the task we face. Usually kd-tree search algorithm is selected when the similarity function is the Euclidean or the Manhattan distances. Generic fast search algorithms (algorithms that works with any distance function) are only used when there is not specific fast search algorithms for the involved distance function.
In this work we show that in real data problems generic search algorithms (i.e. MDF-tree) can be faster that specific ones (i.e. kd-tree).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)
Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 3(3), 209–226 (1977)
Bentley, J.L.: Multidimensional binary search trees in database applications. IEEE Trans. Softw. Eng. 5(4), 333–340 (1979)
Guttman, A.: R-trees: a dynamic index structure for spatial searching. SIGMOD Rec. 14(2), 47–57 (1984)
Samet, H.: The quadtree and related hierarchical data structures. ACM Comput. Surv. 16(2), 187–260 (1984)
Berchtold, S., Keim, D.A., Kriegel, H.P.: Readings in multimedia computing and networking, pp. 451–462. Morgan Kaufmann Publishers Inc., San Francisco (2001)
Micó, L., Oncina, J., Carrasco, R.: A fast branch and bound nearest neighbor classifier in metric spaces. Pattern Recognition Letters 17, 731–773 (1996)
Gómez-Ballester, E., Micó, L., Oncina, J.: Some approaches to improve tree-based nearest neighbour search algorithms. Pattern Recognition 39(2), 171–179 (2006)
Yianilos, P.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 311–321 (1993)
Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of the 21st International Conference on Very Large Data Bases, pp. 574–584 (1995)
Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: Proceedings of the 23rd International Conference on VLDB, Athens, Greece, pp. 426–435. Morgan Kaufmann Publishers (1997)
Mount, D.M., Arya, S.: Ann: A library for approximate nearest neighbor searching (2010)
Noltemeier, H., Verbarg, K., Zirkelbach, C.: Monotonous bisector* trees – a tool for efficient partitioning of complex scenes of geometric objects. In: Monien, B., Ottmann, T. (eds.) Data Structures and Efficient Algorithms. LNCS, vol. 594, pp. 186–203. Springer, Heidelberg (1992)
Serrano, A., Micó, L., Oncina, J.: Impact of the initialization in tree-based fast similarity search techniques. In: Pelillo, M., Hancock, E.R. (eds.) SIMBAD 2011. LNCS, vol. 7005, pp. 163–176. Springer, Heidelberg (2011)
Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees. Inf. Process. Lett. 40(4), 175–179 (1991)
Figueroa, K., Navarro, G., Chávez, E.: Metric spaces library (2007), http://www.sisap.org/Metric_Space_Library.html
Frank, A., Asuncion, A.: UCI machine learning repository (2010)
Chávez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.: Searching in metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Serrano, A., Micó, L., Oncina, J. (2013). Which Fast Nearest Neighbour Search Algorithm to Use?. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds) Pattern Recognition and Image Analysis. IbPRIA 2013. Lecture Notes in Computer Science, vol 7887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38628-2_67
Download citation
DOI: https://doi.org/10.1007/978-3-642-38628-2_67
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38627-5
Online ISBN: 978-3-642-38628-2
eBook Packages: Computer ScienceComputer Science (R0)