Skip to main content

Which Fast Nearest Neighbour Search Algorithm to Use?

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7887))

Included in the following conference series:

  • 1970 Accesses

Abstract

Choosing which fast Nearest Neighbour search algorithm to use depends on the task we face. Usually kd-tree search algorithm is selected when the similarity function is the Euclidean or the Manhattan distances. Generic fast search algorithms (algorithms that works with any distance function) are only used when there is not specific fast search algorithms for the involved distance function.

In this work we show that in real data problems generic search algorithms (i.e. MDF-tree) can be faster that specific ones (i.e. kd-tree).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 3(3), 209–226 (1977)

    Article  MATH  Google Scholar 

  3. Bentley, J.L.: Multidimensional binary search trees in database applications. IEEE Trans. Softw. Eng. 5(4), 333–340 (1979)

    Article  MATH  Google Scholar 

  4. Guttman, A.: R-trees: a dynamic index structure for spatial searching. SIGMOD Rec. 14(2), 47–57 (1984)

    Article  Google Scholar 

  5. Samet, H.: The quadtree and related hierarchical data structures. ACM Comput. Surv. 16(2), 187–260 (1984)

    Article  MathSciNet  Google Scholar 

  6. Berchtold, S., Keim, D.A., Kriegel, H.P.: Readings in multimedia computing and networking, pp. 451–462. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  7. Micó, L., Oncina, J., Carrasco, R.: A fast branch and bound nearest neighbor classifier in metric spaces. Pattern Recognition Letters 17, 731–773 (1996)

    Article  Google Scholar 

  8. Gómez-Ballester, E., Micó, L., Oncina, J.: Some approaches to improve tree-based nearest neighbour search algorithms. Pattern Recognition 39(2), 171–179 (2006)

    Article  MATH  Google Scholar 

  9. Yianilos, P.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pp. 311–321 (1993)

    Google Scholar 

  10. Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of the 21st International Conference on Very Large Data Bases, pp. 574–584 (1995)

    Google Scholar 

  11. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: Proceedings of the 23rd International Conference on VLDB, Athens, Greece, pp. 426–435. Morgan Kaufmann Publishers (1997)

    Google Scholar 

  12. Mount, D.M., Arya, S.: Ann: A library for approximate nearest neighbor searching (2010)

    Google Scholar 

  13. Noltemeier, H., Verbarg, K., Zirkelbach, C.: Monotonous bisector* trees – a tool for efficient partitioning of complex scenes of geometric objects. In: Monien, B., Ottmann, T. (eds.) Data Structures and Efficient Algorithms. LNCS, vol. 594, pp. 186–203. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  14. Serrano, A., Micó, L., Oncina, J.: Impact of the initialization in tree-based fast similarity search techniques. In: Pelillo, M., Hancock, E.R. (eds.) SIMBAD 2011. LNCS, vol. 7005, pp. 163–176. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees. Inf. Process. Lett. 40(4), 175–179 (1991)

    Article  MATH  Google Scholar 

  16. Figueroa, K., Navarro, G., Chávez, E.: Metric spaces library (2007), http://www.sisap.org/Metric_Space_Library.html

  17. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

  18. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.: Searching in metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Serrano, A., Micó, L., Oncina, J. (2013). Which Fast Nearest Neighbour Search Algorithm to Use?. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds) Pattern Recognition and Image Analysis. IbPRIA 2013. Lecture Notes in Computer Science, vol 7887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38628-2_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38628-2_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38627-5

  • Online ISBN: 978-3-642-38628-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics