Skip to main content

A Geostatistical Approach for Selecting the Highest Quality MODIS Daily Images

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7887))

Included in the following conference series:

Abstract

The aim of this work was to develop a new methodology for automatic selection of the highest quality MODIS daily images, MOD09GA Surface Reflectance product. The methodology developed here complements the quality assessment of MODIS products with a geostatistical analysis of spatial pattern images based on variogram tools. The resulting selection is formed by 26 high-quality images (from an initial dataset of 365) from throughout 2007. Most images with geometric distortion problems, such as the bow-tie effect, were rejected. The automatic selection was validated by comparing it to manual selection, which showed that it achieved an overall accuracy of 71.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vermote, E.F., Kotchenova, S.Y.: MOD09 (Surface Reflectance) User’sGuide, http://modis-sr.ltdri.org/products/MOD09_UserGuide_v1_2.pdf

  2. Gao, F., Masek, J., Schwaller, M., Hall, F.: On the Blending of the Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance. IEEE Transactions on Geoscience and Remote Sensing 44(8) (2006)

    Google Scholar 

  3. Hilker, T., Wulder, M.A., Coops, N.C., Seitz, N., White, J.C., Gao, F., Masek, J.G., Stenhouse, G.: Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sensing of Environment 113, 1988–1999 (2009)

    Article  Google Scholar 

  4. Xie, Y., Xiong, X., Qu, J.J., Che, N., Summers, M.E.: Impact analysis of MODIS band-to-band registration on its measurements and science data products. International Journal of Remote Sensing 32(16), 4431–4444 (2011)

    Article  Google Scholar 

  5. Justice, C.O., Townshend, J.R.G., Vermote, E.F., Masuoka, E., Wolfe, R.E., Saleous, N., Roy, D.P., Morisette, J.T.: An overview of MODIS Land data processing and product status. Remote Sensing of Environment 83(1-2), 3–15 (2002)

    Article  Google Scholar 

  6. Gómez-Landesa, E., Rango, A., Bleiweiss, M.: An algorithm to address the MODIS bowtie effect. Canadian Journal of Remote Sensing 30(4), 644–650 (2004)

    Article  Google Scholar 

  7. Curran, P.J., Atkinson, P.M.: Geostatistics and remote sensing. Progress in Physical Geography 22(1), 61–78 (1998)

    Google Scholar 

  8. Garrigues, S., Allard, D., Baret, F.: Using First- and Second-Order Variograms for Characterizing Landscape Spatial Structures from Remote Sensing Imagery. IEEE Transactions on Geoscience and Remote Sensing 45(6), 1823–1834 (2007)

    Article  Google Scholar 

  9. Craig, R.G.: Autocorrelation in Landsat data. In: Proc. of the 13th International Symposium on Remote Sensing of Environment, pp. 1517–1524 (1979)

    Google Scholar 

  10. Atkinson, P.M., Pardo-Igúzquiza, E., Chica-Olmo, M.: Downscaling Cokriging for Super-Resolution Mapping of Continua in Remotely Sensed Images. IEEE Transactions on Geoscience and Remote Sensing 46(2), 573–580 (2008)

    Article  Google Scholar 

  11. Pringle, M.J., Schmidt, M., Muir, J.S.: Geostatistical interpolation of SLC-off Landsat ETM+ images. ISPRS Journal of Photogrammetry and Remote Sensing 64(6), 654–664 (2009)

    Article  Google Scholar 

  12. Atkinson, P.M., Naser, D.K.: A geostatistically weighted k-NN classifier for remotely sensed imagery. Geographical Analysis 42(2), 204–225 (2010)

    Article  Google Scholar 

  13. Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F., Reed, B.C., Huete, A.: Monitoring vegetation phenology using MODIS. Remote Sensing of Environment 84(3), 471–475 (2003)

    Article  Google Scholar 

  14. Wan, Z., Wang, P., Li, X.: Using MODIS Land Surface Temperature and Normalized Difference Vegetation Index products for monitoring drought in the southern Great Plains, USA. International Journal of Remote Sensing 25(1), 61–72 (2004)

    Article  Google Scholar 

  15. Bagan, H., Wang, Q., Yang, Y., Yasuoka, Y., Bao, Y.: Land cover classification using moderate resolution imaging spectrometer-enhanced vegetation index time-series data and self-organizing map neural network in Inner Mongolia. China Journal of Applied Remote Sensing 1(1) (2007)

    Google Scholar 

  16. Feng, M., Huang, C., Channan, S., Vermote, E.F., Masek, J.G., Townshend, J.R.: Quality assessment of Landsat surface reflectance products using MODIS data. Computers & Geosciences 38, 9–22 (2012)

    Article  Google Scholar 

  17. NASA’s Earth Observing System Data and Information System, http://reverb.echo.nasa.gov/reverb/

  18. Woodcock, C.E., Strahler, A.H., Jupp, D.L.B.: The use of variograms in remote sensing: I. Scene models and simulated images. Remote Sensing of Environment 25, 323–348 (1988)

    Article  Google Scholar 

  19. Pons, X.: MiraMon. Geographical Information System and Remote Sensing Software, CREAF (2000), http://www.creaf.uab.cat/MiraMon

  20. Pesquer, L., Cortés, A., Serral, I., Pons, X.: Spatial pattern alterations from JPEG2000 lossy compression of remote sensing images: Massive variogram analysis in High Performance Computing. Journal of Applied Remote Sensing 7(1), 073595 (2013)

    Article  Google Scholar 

  21. Wang, R., Zeng, C., Li, P., Shen, H.: Terra MODIS band 5 Stripe noise detection and correction using MAP-based algorithm. In: 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, pp. 8612–8615 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pesquer, L., Domingo, C., Pons, X. (2013). A Geostatistical Approach for Selecting the Highest Quality MODIS Daily Images. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds) Pattern Recognition and Image Analysis. IbPRIA 2013. Lecture Notes in Computer Science, vol 7887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38628-2_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38628-2_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38627-5

  • Online ISBN: 978-3-642-38628-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics