Abstract
The Evidence Accumulation Clustering, EAC, algorithm is a clustering ensemble method which uses co-occurrence statistics to derive a similarity matrix, referred to as co-association matrix. In order to obtain a final consensus clustering the co-association matrix is fed to a pairwise similarity clustering algorithm. The method has thus O(n 2) space complexity, which can constitute a relevant bottleneck to its scalability. In this paper we propose a new formulation which works using a partial set of the co-occurrences, greatly reducing the computational time and space, leading to a scalable algorithm. Experiments on both synthetic and real benchmark data show the effectiveness of the proposed approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ghosh, J., Acharya, A.: Cluster ensembles. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery 1(4), 305–315 (2011)
Fred, A., Jain, A.: Combining multiple clustering using evidence accumulation. IEEE Trans. Pattern Analysis and Machine Intelligence 27(6), 835–850 (2005)
Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. of Machine Learning Research 3 (2002)
Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)
Rota Bulò, S., Lourenço, A., Fred, A., Pelillo, M.: Pairwise probabilistic clustering using evidence accumulation. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 395–404. Springer, Heidelberg (2010)
Arora, R., Gupta, M., Kapila, A., Fazel, M.: Clustering by left-stochastic matrix factorization. In: Getoor, L., Scheffer, T. (eds.) ICML, pp. 761–768. Omnipress (2011)
Nepusz, T., Petróczi, A., Négyessy, L., Bazsó, F.: Fuzzy communities and the concept of bridgeness in complex networks. Phys. Rev. E 77, 016107 (2008)
Lourenço, A., Bulò, S.R., Rebagliati, N., Figueiredo, M., Fred, A., Pelillo., M.: Probabilistic evidence accumulation for clustering ensembles. In: 2nd Int. Conf. on Pattern Recognition Applications and Methods, ICPRAM 2013 (2013)
Meilă, M.: Comparing clusterings by the variation of information. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 173–187. Springer, Heidelberg (2003)
Jain, A.K., Dubes, R.: Algorithms for Clustering Data. Prentice Hall (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lourenço, A., Bulò, S.R., Rebagliati, N., Fred, A., Figueiredo, M., Pelillo, M. (2013). Consensus Clustering Using Partial Evidence Accumulation. In: Sanches, J.M., Micó, L., Cardoso, J.S. (eds) Pattern Recognition and Image Analysis. IbPRIA 2013. Lecture Notes in Computer Science, vol 7887. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38628-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-38628-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38627-5
Online ISBN: 978-3-642-38628-2
eBook Packages: Computer ScienceComputer Science (R0)