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Abstract. In this short paper, we describe a solution to protect users’ pri-
vacy in online social networks (OSNs). The solution achieves the following
functionalities: (1) it enables users to store their private data securely; (2)
it enables users, from the same or different OSNs, to compute their simi-
larity through a secure protocol; (3) it enables similar users to establish a
session key for secure communication. Different from existing solutions in
the literature, which often rely on a global public key infrastructure or/and
traditional key distribution techniques, the proposed solution leverages
on the trust between friends and the entropy of users’ private attributes.

1 Introduction

Online social networks (OSNs) provide the service that connects classmates,
friends, and other people who share similar interests and activities across po-
litical, economic, and geographic borders. As surveyed in [1], a large number
of OSNs exist, among which Facebook, MySpace, Google +, and Twitter are the
most popular ones.

Due to their nature, OSNs can easily collect a huge amount of user data.
Among all kinds of OSN data, a particularly important one is profile attributes.
In most OSNSs, profile attributes consist of a lot of information, ranging from
name, address, education background to political views, hobbies, and daily
activities. All attributes are available in plaintext to the OSN service providers
and, depending on the configurations, some of them are available to third
parties. It is not surprising that a subset of the profile attributes can already
identify a user, even after anonymization [4, 6]. Therefore, it is an interesting
task to design a solution for users to: (1) protect their private profile attributes;
(2) establish friendship with strangers based on their profile similarities (this
is the main reason why users want to publish their profiles). This implies that
the solution should partially resolve the privacy-functionality tension [8], by
simultaneously providing privacy protection for profile attributes and allowing
users to conveniently compute their profile similarities.

In reality, it is reasonable to assume that most users are involved in multiple
OSNs. Now, suppose that both Alice and Bob are enrolled in Facebook and
Myspace, and they have the same location attribute in Facebook and the same
music taste attribute in Myspace. Due to the different focuses of the OSNs, Alice
and Bob may not disclose their location information in Myspace, at the same



time they may not disclose their music taste information in Facebook. It will
not be a surprise that Alice and Bob are not friends in Facebook and Myspace,
because they do not share much in common in either of the OSNs. If they realize
their common attributes in both OSNs, Alice and Bob may like to consider each
other as a friend and attend some music event together in the city. This indicates
that it is desirable to have a solution which works across multiple OSNs.

1.1 Our Contribution

The contribution of this paper is threefold. Firstly, we describe some new crypto-
graphic building blocks and briefly analyze their security properties, including
a unilateral set intersection cardinality protocol and a unilateral comparison
protocol. Secondly, we propose a solution for protecting users’ private profile
attributes in OSNs. In the solution, a transitive and uni-directional proxy re-
encryption scheme [5] allows users to encrypt their private profile attributes
with their own public keys. Based on the unilateral set intersection cardinality
protocol, we design an Online-Offline profile matching protocol, which allows
two users to compute their profile similarity and one of them can stay offline.
Based on the unilateral comparison protocol and a fuzzy extractor scheme [3],
we design an Online-Online profile matching protocol, which allows two online
users to compute their profile similarity. Thirdly, we observe that users” commu-
nications are under surveillance by the OSN service providers. So, we propose
a secure channel establishment protocol which allows two users to exchange a
session key if they share a certain number of common private profile attributes.

1.2 Organization

The rest of this paper is organized as follows. In Section 2, we describe the
new building blocks which will be used later on. In Section 3, we briefly de-
scribe the proposed solution. In Section 4, we provide the details of the profile
matching protocols and a secure channel establishment protocol, employed in
the proposed solution. In Section 5, we conclude the paper.

2 New Cryptographic Building Blocks

The proposed solution employs transitive and uni-directional proxy re-encryption
cryptosystem , namely (KeyGen, Enc, Dec, Pextract, Preenc) [5], and the follow-
ing two new protocols.

2.1 Unilateral Set Intersection Cardinality Protocol

Let ¢ be the security parameter, 7 > 1 be an integer and IF = Z, where g is
a prime number (i.e. F is a finite field). We assume that the bit-length of g is
a polynomial of the security parameter £ and n < g. Consider the following
client-server setting: the server possesses a polynomial R(x) € [F[x]; the client



possesses a polynomial Q(x) € F[x] and ¢; (1 < i < n) € [F. Suppose that R(x)
and Q(x) are of degree n, and the roots of 7 (x) = R(x) + Q(x) are denoted as
di(1 <i < n) € F. Based on Paillier scheme [7], the following protocol allows the
client to learn the cardinality of the set intersection between ¢; (1 <i < n) and d;
(1 <i < n), while the server learns nothing.

1. The server generates a paillier key pair (PK;, SK;), where the public key is
PK; = (Ns, g5). The client generates a paillier key pair (PK,, SK.), where the
public key is PK. = (N, gc). then, they exchange and validate their public
keys. Here, we assume that g° < N, and g < N,, so that the polynomial
coefficients and roots can be directly encrypted by both public keys.

2. The server encrypts its polynomial R(x) and sends the ciphertext [R(x)]px.
to the client. Note that [R(x)]pk, is a vector, consisting of the ciphertexts of
R(x)’s coefficients under PK;.

3. For every attribute c; (1 < i < n), the client does the following: (1) compute
[R(ci)lpk, based on [R(x)]pk, and ci; (2) compute Q(c;) and its ciphertext
[Q(c:)lpxc; (3) compute [ (c:)]px, based on [R(c)]pk, and [Q(e:)]px.; (4) select
Yi €rR Zyp and compute the randomized value [F(c;) + yilpk,; (5) compute
y: =y mod qand [N — y']pk,. After all the computations, the client sends
F(ci) + yilpk., [Nc —yilpk, (1 <i<n) to the server.

4. After receiving the values from the client, for every i (1 < i < n), the server
does the following: (1) decrypt [F (c;) + yilpk, to obtain ¥ (¢;) + yi; (2) compute
T; = F(c;)+y; mod gwhichisequal to ¥ (c;)+ v mod g; (3) select y! €r Nc
and compute R; = ([Ti]px, - [Nc — ! Irx.)¥’ mod N2. After all the computa-
tions, the server sends a randomly permuted version of {R; (1 <i < n)} to
the client.

5. The client decrypts R; (1 < i < n), and count the number of Os as the
intersection size.

2.2 Unilateral Comparison Protocol

Let G be a group of prime order p, and H, : {0,1}* = G and Hz : {0, 1}* — {0, 1}¢
be two hash functions. If a client wants to test whether his value S is equal to
the value S’ of the server, then the client initiates the protocol shown in Fig. 1.

Client (S) Server (5')
X €R Zp UASH Zp
Hy(S)*
—_—
H3(Ha(S")Y), Ha(S)Y

Ha(Ha(5)") = Ha(Ha(S)™™)

Fig. 1. Unilateral Comparison Protocol



3 The Proposed Solution for OSNs

We generally assume that there is a semi-trust relationship among friends in
OSNs. By ”semi-trust”, we mean that if Alice semi-trusts Bob then she can
assume that Bob will not collude with a third-party or reveal her private in-
formation. Moreover, we assume that the semi-trust relationship is unilateral,
which means that ”Alice semi-trusts Bob” does not immediately imply “Bob
semi-trusts Alice”. Furthermore, we assume that the semi-trust relationship
is transitive: if Alice semi-trusts Bob, Bob semi-trusts Charlie, then Alice will
semi-trust Charlie.

There is a PPCP server, which is semi-trusted to every user in the system.
Therefore, users do not need to fully trust the PPCP server to store their plaintext
attributes. Compared with any current OSN, where users need to fully trust the
service providers, this is an improvement. Every user can communicate with
the PPCP server through a secure channel. Moreover, the PPCP server is trusted
to publish the following parameters, used by all users.

— Security parameter: €.

- ElGamal parameter: a multiplicative group G of degree p, a generator g,
and three cryptographic hash functions Hy : G — Z,, Hy : {0, 1} — {0,1}F,
H, : {0,1} > G, and Hs : {0,1}* — {0,1}¢ where L is a polynomial of the
security parameter.

— Profile encapsulation parameter: a finite field IF = Z,; where g is a prime
number. We assume that the attributes fall into IF.

Let all the users be denoted as U; (1 < i < N), where N is an integer, and
U/’s attributes be denoted as A; = {h;; (1 < j < n)}. The proposed solution
is composed of three services, including the secure profile storage service, the
secure profile matching service, and the secure communication service. They
are described in detail below.

3.1 Secure Profile Storage Service

U; registers at the PPCP server and obtains an identifier ID;. Moreover, U;
generates an ElGamal public/private key pair (PK;, SK;), where (SK; = x;, PK; =
g"), following the specification in [5] based on the ElGamal parameter. U; sends
the public parameters (ID;, PK;) to its friends.

1. U; chooses a subset of his friends that he semi-trusts, denoted as U;, (1 <
x < Nj).
2. U; performs the following operations.
(a) Generate re-encryption keys RK;_,;, for every (1 < x < N;), which is
identified by (ID;, ID;,).
(b) Based on his attributes /;; (1 < j < n), generate Fi(x), Qi(x), Ri(x) € F[x]
of degree n as follows: 7(x) = H;’Zl(x —hi ), Fi(x) = Qi(x) + Ri(x), where
the coefficients of R;(x) are randomly chosen from FF.



(c) Based on the ElGamal encryption algorithm Enc specified in [5], encrypt
Qi(x) using PK; to obtain [Qi(x)]pk, = (g", & - t;, Hi(t;) ® Qi(x)), where
ri €r Zp, t; €r G, Qi(x) represents the coefficients of Q;(x).
3. U; stores (PK;, RKi;, (1 < x < Nj), Ri(x), [Qi(x)]pk,) at the PPCP server, and
associates the data to his identifier ID;. He keeps SK; private locally.

With users” data, the PPCP server can construct a social graph G of the semi-
trust relationships among users. In this graph, there is a directed edge from U;
to U; if U; semi-trusts U; (i.e. U; has generated a re-encryption key RK;_;).

3.2 Secure Profile Matching Service (i.e. Friendship Establishment)

Suppose that U; has obtained some public information about U; and consider
him as a potential friend. For example, U; may have publish his identifier ID; and
some hobby information at Facebook, and U; surfed to U;’s page and obtained
the information. Then, U; can send ID; to the PPCP server and request to match
with U;. When the PPCP server receives a request, it first checks whether U; is
online. If so, it check U;’s policy, which can have two possibilities.

1. If U; prefers to run the Online-Online protocol described in Section 4.2 when
he is online, then U; and U; run the protocol.

2. If U; prefers not to be involved in the matching, the PPCP server tries to
find the shortest semi-trust link from U; to U;. If the length of the link is
within a threshold agreed by U;, then the PPCP server represents U; to run
the Online-Offline protocol described in Section 4.1 with U;. Otherwise, U;’s
request is rejected.

If U, is offline, the PPCP server checks U;’s policy to see whether he wants
his profile to be matched when he is offline. If so, the PPCP server does the same
as in the aforementioned possibility 2. Otherwise, U;’s request is rejected.

3.3 Secure Communication Service

Suppose that there is a semi-trust link from U; to U;, and these two users want
to protect their communications. Then, then they can run the secure channel
establishment protocol described in Section 4.3. Note that the existence of semi-
trust link implies that U; and U; share a certain number of common profile
attributes, therefore, the protocol will generate a common session key for them.

4 The Employed Protocols

In this section, we describe two profile matching protocols and a secure channel
establishment protocol, that are refereed to in the previous section.



4.1 Online-Offline Matching Protocol

Suppose that a user U; wants to match his profile with U; and there is a semi-
trust link from U; to U;, namely there is a chain of proxy re-encryption keys
(RKisi,, RKiy iy, -+, RKj,— ) from U; to U;. In this case, the following protocol is

carried out between U; and the PPCP server.

1. In the first stage, the polynomial @;(x) is transferred to U;. In more detail,
the PPCP server performs a series of re-encryptions to transform [Q;(x)]px;
into [Q;(x)]pk; using the chain of re-encryption keys. From [Qi(x)]px,, U; can
recover Q;(x) using his own private key SK;. At the end of this stage, U; has
Qi(x) and his own attributes A; = {hj; (1 < t < n)}, and the PPCP server

possess Ri(x).

2. Inthesecond stage, U; and the PPCP server run the unilateral set intersection
cardinality protocol, specified in Section 2.1, where U; and the PPCP server
play the roles of the client and the server respectively. At the end of the
protocol execution, U; learns her profile simplicity with U;.

4.2 Online-Online Matching Protocol

The proposed protocol makes use of a (U, {1, {», t, €)-fuzzy extractor [3], where
U is the domain of profile attribute set. When Uj is the initiator, the proposed

protocol proceeds in two stages.

1. In the first stage, U; and U; engage in a protocol, shown in Fig. 2, where H;

is defined in Section 3.

U
(A = (hy (L <t <)

(A;={h; 1<t <n)

(7’]‘, hj) = Gen((hj/l, . ’hj,n))

(ri,hi) = Gen((hi, -+

hi
—

r; = Rep(A;, h;)

7’} = Rep(ﬂi, h])

ck; = Hy(IDID\1hil|7; 1117 ) cki = Hy(IDi{IIDjl[dIrillRjlir7)

Fig. 2. Online Matching Protocol (Stage 1)

2. Inthe second stage, U; initiates the unilateral comparison protocol, specified

in Section 2.2, to test whether ck; = ck;.

4.3 Secure Channel Establishment Protocol

As in Section 4.2, the proposed protocol combines a (U, {1, {,, t,€)-fuzzy ex-
tractor scheme [3] and a secure password-based authenticated key exchange



(PAKE) scheme. Note that a lot of PAKE schemes exist in the literature, Boyd
and Mathuria [2] provided a survey for those proposed before 2004. In more
detail, when U; initiates the protocol with U;, then they perform as follows.

1. In the first stage, they run the protocol shown in Fig. 2 to establish some
ephemeral secrets. U; generates ck; = Hi(ID/|ID|||hil|7}|lhjllr;) and U; gener-
ates ck; = Hi(IDi||IDl|hillri|lh jllr;.). Note that if the distance between A; and
Aj is smaller than ¢, then ck; = ck;.

2. In the second stage, they run a secure PAKE scheme to establish a session
key. The key materials of ck; and ck; are used as the passwords.

5 Conclusion

In this short paper, we have briefly outlined a privacy-preserving solution
for OSNs. The solution provides three services, including the secure profile
storage service, the secure profile matching service, and the secure commu-
nication service. More details about the proposed solution and the associated
protocols can be found in the full version of this paper, which is available at:
http://tonyrhul.wordpress.com.
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