Abstract
Our eyes never remain still. Even when we stare at a point, small involuntary movements move our eyes in an imperceptible manner. Researchers agree on the presence of three main contributions to eye movements when we fix the gaze: microsaccades, drifts and tremor. These small movements carry the image across the retina stimulating the photoreceptors and thus avoiding fading. Nowadays it is commonly accepted that these movements can improve the discrimination performance of the retina. In this paper, several retina models with or without fixational eye movements were implemented by mean of RetinaStudio tool to test the feasability of these models to be incorporated in future neuroprosthesis. For this purpose each retina model have been stimulated with the same natural scene sequence of images. Results are discussed from the point of view of a neuroprosthesis development.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Martinez-Conde, S., Macknik, S.L., Hubel, D.H.: The role of fixational eye movements in visual perception. Nature Reviews Neuroscience 5, 229–240 (2004)
Yarbus, A.L.: Eye Movements and Vision. Plenum, New York (1967)
Ratliff, F., Riggs, L.A.: A involuntary motions of the eye during monocular fixation. J. Exp. Psychol. 40, 687–701 (1950)
Ditchburn, R.W.: The function of small saccades. Vision Res. 20, 271–272 (1980)
Gerrits, H.J., Vendrik, A.J.: Artificial movements of a stabilized image. Vision Research 10, 1443–1456 (1970)
Krauskopf, J.: Effect of retinal image motion on contrast thresholds for maintained vision. Journal of the Optical Society of America 47, 740–744 (1957)
Sharpe, C.R.: The visibility and fading of thin lines visualized by their controlled movement across the retina. Journal of Physiology 222, 113–134 (1972)
Steinman, R.M., Cunitz, R.J., Timberlake, G.T., Herman, M.: Voluntary control of microsaccades during maintained monocular fixation. Science 155, 1577–1579 (1967)
Zuber, B.L., Stark, L.: Saccadic suppression: Elevation of visual threshold associated with saccadic eye movements. Experimental Neurology 16, 65–79 (1966)
Riggs, L.A., Ratliff, F.: The effects of counteracting the normal movements of the eye. Journal of the Optical Society of America 42, 872–873 (1952)
Ditchburn, R.W., Fender, D.H., Mayne, S.: Vision with controlled movements of the retinal image. J. Physiol. 145(1), 98–107 (1959)
Nachmias, J.: Determiners of the Drift of the Eye during Monocular Fixation. J. Opt. Soc. Am. 51, 761–766 (1961)
Greschner, M., Bongard, M., Rujan, P., Ammermüeller, J.: Retinal ganglion cell synchronization by fixational eye movements improves feature estimation. Nature Neuroscience 5, 341–347 (2002)
Donner, K., Hemila, S.: Modelling the effect of microsaccades on retinal responses to stationary contrast patterns. Vision Research 47(9), 1166–1177 (2007) ISSN 0042-6989, 10.1016/j.visres.2006.11.024
Martínez, A., Reyneri, L.M., Pelayo, F.J., Romero, S.F., Morillas, C.A., Pino, B.: Automatic Generation of Bio-inspired Retina-Like Processing Hardware. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 527–533. Springer, Heidelberg (2005)
Wohrer, A., Kornprobst, P.: Virtual Retina: A biological retina model and simulator, with contrast gain control. Journal of Computational Neuroscience 26, 219–249 (2009)
Bongard, M., Ferrandez, J.M., Fernandez, E.: The neural concert of vision. Neurocomputing 72, 814–819 (2009)
Martìnez-Álvarez, A., Olmedo-Payá, A., Cuenca-Asensi, S., Ferrández, J.M., Fernández, E.: RetinaStudio: A bioinspired framework to encode visual information. Neurocomputing (2012) ISSN 0925–2312, 10.1016/j.neucom.2012.07.035
Ferrández, J.M., Bongard, M., García de Quirós, F., Bolea, J.A., Ammermüller, J., Normann, R.A., Fernández, E.: Decoding the Population Responses of Retinal Ganglions Cells Using Information Theory. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 55–62. Springer, Heidelberg (2001)
Normann, R., Maynard, E.M., Rousche, P., Warren, D.: A neural interface for a cortical vision prosthesis. Vision Res. 39, 2577–2587 (1999)
Morillas, C.A., Romero, S.F., Martínez, A., Pelayo, F.J., Fernández, E.: A Computational Tool to Test Neuromorphic Encoding Schemes for Visual Neuroprostheses. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 510–517. Springer, Heidelberg (2005)
Gerstner, W., Kistler, W.: Spiking Neuron Modelssingle Neurons, Populations, Plasticity, pp. 93–97. Cambridge University Press (2002)
Gauthier, J.L., Field, G.D., Sher, A., Greschner, M., Shlens, J., Litke, A.M., Chichilnisky, E.J.: Receptive Fields in Primate Retina are Coordinated to Sample Visual Space More Uniformly. PLoS Biol. 7(4), 1000063 (2009), doi:10.1371/journal.pbio.1000063
Carpenter, R.H.S.: Movements of the Eyes. Journal of Modern Optics 36(9), 1273–1276 (1989)
Stacy, E.W.: A Generalization of the Gamma Distribution. Ann. Math. Statist. 33(3), 1187–1192 (1962)
Pritchard, R.M.: Stabilized images on the retina. Sci. Am. 204, 72–78 (1961)
Straw, A.D.: Vision Egg: an Open-Source Library for Realtime Visual Stimulus Generation. Front Neuroinformatics 2(4) (2008), doi:10.3389/neuro.11.004.2008
NEV 2.0 (Neural Event Format) format specification http://cyberkineticsinc.com/NEVspc20.pdf
NeurALC., http://neuralc.sourceforge.net
Mancuso, M., Poiuzzi, R., Rizzotto, G.G.: A fuzzy filter for dynamic range reduction and contrast enhancement. In: Proceedings of the Third IEEE Conference on Fuzzy Systems, IEEE World Congress on Computational Intelligence, vol. 1, pp. 264a, 265–267 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Olmedo-Payá, A., Martínez-Álvarez, A., Cuenca-Asensi, S., Ferrández-Vicente, J.M., Fernández, E. (2013). Modeling the Effect of Fixational Eye Movements in Natural Scenes. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds) Natural and Artificial Models in Computation and Biology. IWINAC 2013. Lecture Notes in Computer Science, vol 7930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38637-4_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-38637-4_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38636-7
Online ISBN: 978-3-642-38637-4
eBook Packages: Computer ScienceComputer Science (R0)