Skip to main content

Inverse Allometry: Foundations for a Bioinspired LVH-Prediction Model

  • Conference paper
Natural and Artificial Models in Computation and Biology (IWINAC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7930))

  • 1291 Accesses

Abstract

Allometry, in general biology, measures the relative growth of a part in relation to the whole living organism. Left ventricular hypertrophy (LVH) is the heart adaptation to excessive load (systolic or diastolic) that leads to an increase in left ventricular mass, which in turn, raises the electrocardiographic voltages. If this mass increase followed an allometric law, then it would be possible to design a bioinspired model based on the allometric equation to predict LVH. In this work, we first investigated the validity of this hypothesis and then proposed an LVH marker based on the inverse allometry model. Based on clinical data, we compared the allometric behavior of three different ECG markers of LVH. To do this, the allometric fit AECG = δ + β(VM) relating left ventricular mass (estimated from echocardiographic data) and ECG amplitudes (expressed as the Cornell-Voltage, Sokolow and the ECG overall voltage indexes) were compared. Besides, sensitivity and specificity for each index were analyzed. The more sensitive the ECG criteria, the better the allometric fit. Finally, the Receiver Characteristic Curve (ROC) of an allometric model proposed here was computed. In conclusion: The allometric paradigm should be regarded as the way to design new and more sensitive ECG-based LVH markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lindstedt, S.L., Schaeffer, P.: Use of allometry in predicting anatomical and physiological parameters of mammals. Laboratory Animals 36, 1–19 (2002)

    Article  Google Scholar 

  2. Lindstedt, S.L., Miller, B., Buskirk, S.: Home range, time, and body size in mammals. Ecology 67(2), 413–418 (1986)

    Article  Google Scholar 

  3. Noujaim, S.F., Lucca, E., Muñoz, V., Persaud, D., Berenfeld, O., Meijler, F.L., Jalife, J.: From mouse to whale: A universal scaling relation for the PR interval of the electrocardiogram of mammals. Circulation 110, 2801–2808 (2004)

    Article  Google Scholar 

  4. Bonomini, M.P., Arini, P.D., Gonzalez, G., Buchholz, B., Valentinuzzi, M.E.: The allometric model in chronic myocardial infarction. Theoretical Biology and Medical modeling, epub. 9, 15 (2012)

    Article  Google Scholar 

  5. Bonomini, M.P., Arini, P.D., Valentinuzzi, M.E.: Probability of ventricular fibrillation: allometric model based on the ST deviation. Biomed. Eng. Online 10(2) (January 13, 2011)

    Google Scholar 

  6. MacFarlane, P.W., Lawrie, T.D. (eds.): Comprehensive Electrocardiography: Theory and Practice in Health and Disease. Pergamon Press, Oxford (1998)

    Google Scholar 

  7. Hsieh, B.P., Pham, M.X., Froelicher, V.F.: Prognostic value of electrocardiographic criteria for left ventricular hypertrophy. Am Heart J. 150(1), 161–167 (2005)

    Article  Google Scholar 

  8. Hancock, W., Deal, B., Mirvis, D., Okin, P., Kligfield, P., Gettes, L.: Recommendations for the standardization and interpretation of the electrocardiogram. Journal of the American College 53(11) (2009)

    Google Scholar 

  9. Casale, P., Devereux, R., Kligfield, P., Eisenberg, R.R., Miller, D.H., Chaudhary, B.S., Phillips, M.C.: Electrocardiographic detection of left ventricular hypertrophy: development and prospective validation of improved criteria. J. Am. Coll. Cardiol. 6, 572–580 (1985)

    Article  Google Scholar 

  10. Levy, D., Savage, D., Garrison, R.J., Anderson, K.M., Kannel, W.B., Castelli, W.P.: Echocardiographic criteria for left ventricular hypertrophy: the Framingham Heart Study. Am J. Cardiol. 59, 956–960 (1987)

    Article  Google Scholar 

  11. Siegel, R.J., Roberts, R.W.: Electrocardiographic observations in severe aortic valve stenosis: correlative necropsy study to clinical, hemodynamic, and ECG variables demonstrating relation to 12-lead QRS amplitude to peak systolic transaortic pressure gradient. Am. Heart J. 103(2), 210–221 (1982)

    Article  Google Scholar 

  12. Sokolow, M., Lyon, T.P.: The ventricular complex in left ventricular hypertrophy as obtained by unipolar and limb leads. Am. Heart J. 38(2), 273–294 (1949)

    Article  Google Scholar 

  13. Troy, B.L., Pombo, J., Rackley, C.E.: Measurement of left ventricular wall thickness and mass by echocardiography. Circulation 45(3), 602–611 (1972)

    Article  Google Scholar 

  14. Devereux, R.B., Reichek, N.: Echocardiographic determination of left ventricular mass in man. Anatomic Validation of the Method Circulation 55(4), 613–618 (1977)

    Google Scholar 

  15. Foppa, M., Duncan, B., Rohde, L.: Echocardiography-based left ventricular mass estimation. How should we define hypertrophy? Cardiovasc Ultrasound 3, 3–17 (2005)

    Article  Google Scholar 

  16. Snell, O.: Die Abhängigkeit des Hirngewichtes von dem Körpergewicht und den geistigen Fähigkeiten (Dependence of brain weight on body weight and the intellectual capacity). Arch. Psychiatr. u Nervenkr. 23, 436–446 (1891)

    Article  Google Scholar 

  17. Von Bertalanffy, L.: Quantitative laws in metabolism and growth. Quaterly Review Biology 32(3) (1957)

    Google Scholar 

  18. Altman, D.: Statistics in medical journals: developments in the 1980s. Stat. Med. 10(12), 1897–1913 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonomini, M.P., Ingallina, F., Barone, V., Arini, P.D. (2013). Inverse Allometry: Foundations for a Bioinspired LVH-Prediction Model. In: Ferrández Vicente, J.M., Álvarez Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds) Natural and Artificial Models in Computation and Biology. IWINAC 2013. Lecture Notes in Computer Science, vol 7930. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38637-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38637-4_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38636-7

  • Online ISBN: 978-3-642-38637-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics