Skip to main content

Hybrid State Variables - Fuzzy Logic Modelling of Nonlinear Objects

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7894))

Included in the following conference series:

Abstract

In this paper a new hybrid method for modelling of nonlinear dynamic systems is proposed. It uses fuzzy logic system together with state variables technique to obtain the local linear approximation performed continuously for successive operating points. This approach provides good accuracy and allows the use of very convenient and well-known method from linear control theory to analyse the obtained model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bartczuk, Ł., Rutkowska, D.: Type-2 Fuzzy Decision Trees. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 197–206. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Bartczuk, Ł., Rutkowska, D.: Medical Diagnosis with Type-2 Fuzzy Decision Trees. In: Kącki, E., Rudnicki, M., Stempczyńska, J. (eds.) Computers in Medical Activity. AISC, vol. 65, pp. 11–21. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Chang, W.J., Chang, W., Liu, H.-H.: Model-based fuzzy modeling and control for autonomous underwater vehicles in the horizontal plane. Journal of Marine Science and Technology 11(3), 155–163 (2003)

    MathSciNet  Google Scholar 

  4. Cordon, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems: Evolutionary tuning and learning of fuzzy knowledge bases. World Scientific (2001)

    Google Scholar 

  5. Cpałka, K., Rutkowski, L.: Compromise approach to neuro-fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, vol. 76, pp. 85–90. IOS Press (2002)

    Google Scholar 

  6. Cpałka, K., Rutkowski, L.: Flexible Takagi Sugeno fuzzy systems. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 2005, Montreal, pp. 1764–1769 (2005)

    Google Scholar 

  7. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno Neuro-Fuzzy Structures for Nonlinear Approximation. WSEAS Transactions on Systems 4(9), 1450–1458 (2005)

    Google Scholar 

  8. Cpałka, K.: A method for designing flexible neuro-fuzzy systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 212–219. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Cpałka, K., Rutkowski, L.: A new method for designing and reduction of neuro-fuzzy systems. In: 2006 IEEE International Conference on Fuzzy Systems, pp. 1851–1857 (2006)

    Google Scholar 

  10. Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. In: Nonlinear Analysis Series A: Theory, Methods and Applications, vol. 71, Elsevier (2009)

    Google Scholar 

  11. Cpałka, K.: A New Method for Design and Reduction of Neuro-Fuzzy Classification Systems. IEEE Transactions on Neural Networks 20(4), 701–714 (2009)

    Article  Google Scholar 

  12. Johansen, T.A., Shorten, R., Murray-Smith, R.: On the Interpretation and Identification of Dynamic Takagi-Sugeno Fuzzy Models. IEEE Transactions on Fuzzy Systems 8(3) (2000)

    Google Scholar 

  13. Kamyar, M.: Takagi-Sugeno Fuzzy Modeling for Process Control Industrial Automation. Robotics and Artificial Intelligence (EEE8005), School of Electrical, Electronic and Computer Engineering (2008)

    Google Scholar 

  14. Li, X., Er, M.J., Lim, B.S., et al.: Fuzzy Regression Modeling for Tool Performance Prediction and Degradation Detection. International Journal of Neural Systems 20(5), 405–419 (2010)

    Article  Google Scholar 

  15. Ogata, K.: Modern Control Engineering. Prentice Hall (2001)

    Google Scholar 

  16. Przybył, A., Smoląg, J., Kimla, P.: Real-time Ethernet based, distributed control system for the CNC machine. Electrical Review 2010-2 (2010) (in Polish)

    Google Scholar 

  17. Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 697–705. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Rutkowski, L., Cpałka, K.: Flexible neuro-fuzzy systems. IEEE Trans. Neural Networks 14(3), 554–574 (2003)

    Article  Google Scholar 

  19. Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer (2008)

    Google Scholar 

  20. Rutkowski, L., Przybył, A., Cpałka, K.: Novel Online Speed Profile Generation for Industrial Machine Tool Based on Flexible Neuro-Fuzzy Approximation. IEEE Transactions on Industrial Electronics 59(2), 1238–1247 (2012)

    Article  Google Scholar 

  21. Schroder, D.: Intelligent Observer and Control Design for Nonlinear Systems. Springer, Heidelberg (2000)

    Book  Google Scholar 

  22. Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 362–367. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bartczuk, Ł., Przybył, A., Dziwiński, P. (2013). Hybrid State Variables - Fuzzy Logic Modelling of Nonlinear Objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38658-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38658-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38657-2

  • Online ISBN: 978-3-642-38658-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics