Abstract
In this paper a new hybrid method for modelling of nonlinear dynamic systems is proposed. It uses fuzzy logic system together with state variables technique to obtain the local linear approximation performed continuously for successive operating points. This approach provides good accuracy and allows the use of very convenient and well-known method from linear control theory to analyse the obtained model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bartczuk, Ł., Rutkowska, D.: Type-2 Fuzzy Decision Trees. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 197–206. Springer, Heidelberg (2008)
Bartczuk, Ł., Rutkowska, D.: Medical Diagnosis with Type-2 Fuzzy Decision Trees. In: Kącki, E., Rudnicki, M., Stempczyńska, J. (eds.) Computers in Medical Activity. AISC, vol. 65, pp. 11–21. Springer, Heidelberg (2009)
Chang, W.J., Chang, W., Liu, H.-H.: Model-based fuzzy modeling and control for autonomous underwater vehicles in the horizontal plane. Journal of Marine Science and Technology 11(3), 155–163 (2003)
Cordon, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems: Evolutionary tuning and learning of fuzzy knowledge bases. World Scientific (2001)
Cpałka, K., Rutkowski, L.: Compromise approach to neuro-fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, vol. 76, pp. 85–90. IOS Press (2002)
Cpałka, K., Rutkowski, L.: Flexible Takagi Sugeno fuzzy systems. In: Proceedings of the International Joint Conference on Neural Networks, IJCNN 2005, Montreal, pp. 1764–1769 (2005)
Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno Neuro-Fuzzy Structures for Nonlinear Approximation. WSEAS Transactions on Systems 4(9), 1450–1458 (2005)
Cpałka, K.: A method for designing flexible neuro-fuzzy systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 212–219. Springer, Heidelberg (2006)
Cpałka, K., Rutkowski, L.: A new method for designing and reduction of neuro-fuzzy systems. In: 2006 IEEE International Conference on Fuzzy Systems, pp. 1851–1857 (2006)
Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. In: Nonlinear Analysis Series A: Theory, Methods and Applications, vol. 71, Elsevier (2009)
Cpałka, K.: A New Method for Design and Reduction of Neuro-Fuzzy Classification Systems. IEEE Transactions on Neural Networks 20(4), 701–714 (2009)
Johansen, T.A., Shorten, R., Murray-Smith, R.: On the Interpretation and Identification of Dynamic Takagi-Sugeno Fuzzy Models. IEEE Transactions on Fuzzy Systems 8(3) (2000)
Kamyar, M.: Takagi-Sugeno Fuzzy Modeling for Process Control Industrial Automation. Robotics and Artificial Intelligence (EEE8005), School of Electrical, Electronic and Computer Engineering (2008)
Li, X., Er, M.J., Lim, B.S., et al.: Fuzzy Regression Modeling for Tool Performance Prediction and Degradation Detection. International Journal of Neural Systems 20(5), 405–419 (2010)
Ogata, K.: Modern Control Engineering. Prentice Hall (2001)
Przybył, A., Smoląg, J., Kimla, P.: Real-time Ethernet based, distributed control system for the CNC machine. Electrical Review 2010-2 (2010) (in Polish)
Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 697–705. Springer, Heidelberg (2012)
Rutkowski, L., Cpałka, K.: Flexible neuro-fuzzy systems. IEEE Trans. Neural Networks 14(3), 554–574 (2003)
Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer (2008)
Rutkowski, L., Przybył, A., Cpałka, K.: Novel Online Speed Profile Generation for Industrial Machine Tool Based on Flexible Neuro-Fuzzy Approximation. IEEE Transactions on Industrial Electronics 59(2), 1238–1247 (2012)
Schroder, D.: Intelligent Observer and Control Design for Nonlinear Systems. Springer, Heidelberg (2000)
Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 362–367. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bartczuk, Ł., Przybył, A., Dziwiński, P. (2013). Hybrid State Variables - Fuzzy Logic Modelling of Nonlinear Objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7894. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38658-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-38658-9_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38657-2
Online ISBN: 978-3-642-38658-9
eBook Packages: Computer ScienceComputer Science (R0)