Skip to main content

Kernelizing the Proportional Odds Model through the Empirical Kernel Mapping

  • Conference paper
Advances in Computational Intelligence (IWANN 2013)

Abstract

The classification of patterns into naturally ordered labels is referred to as ordinal regression. This paper explores the notion of kernel trick and empirical feature space in order to reformulate the most widely used linear ordinal classification algorithm (the Proportional Odds Model or POM) to perform nonlinear decision regions. The proposed method seems to be competitive with other state-of-the-art algorithms and significantly improves the original POM algorithm when using 8 ordinal datasets. Specifically, the capability of the methodology to handle nonlinear decision regions has been proven by the use of a non-linearly separable toy dataset.

This work has been partially subsidized by the TIN2011-22794 project of the Spanish Ministerial Commission of Science and Technology (MICYT), FEDER funds and the P2011-TIC-7508 project of the “Junta de Andalucía” (Spain).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agresti, A.: Categorical Data Analysis, 2nd edn. Wiley Series in Probability and Statistics. Wiley-Interscience (2002)

    Google Scholar 

  2. McCullagh, P.: Regression models for ordinal data. Journal of the Royal Statistical Society 42(2), 109–142 (1980)

    MATH  MathSciNet  Google Scholar 

  3. Schölkopf, B., Mika, S., Burges, C.J.C., Knirsch, P., Müller, K.R., Rätsch, G., Smola, A.J.: Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks 10, 1000–1017 (1999)

    Article  Google Scholar 

  4. Xiong, H., Swamy, M.N.S., Ahmad, M.O.: Optimizing the kernel in the empirical feature space. IEEE Transactions on Neural Networks 16(2), 460–474 (2005)

    Article  Google Scholar 

  5. Abe, S., Onishi, K.: Sparse least squares support vector regressors trained in the reduced empirical feature space. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4669, pp. 527–536. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Xiong, H.: A unified framework for kernelization: The empirical kernel feature space. In: Chinese Conference on Pattern Recognition (CCPR), pp. 1–5 (November 2009)

    Google Scholar 

  7. Verwaeren, J., Waegeman, W., De Baets, B.: Learning partial ordinal class memberships with kernel-based proportional odds models. Comput. Stat. Data Anal. 56(4), 928–942 (2012)

    Article  MATH  Google Scholar 

  8. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10(5), 460–474 (1998)

    Article  Google Scholar 

  9. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  10. Chu, W., Ghahramani, Z.: Gaussian processes for ordinal regression. Journal of Machine Learning Research 6, 1019–1041 (2005)

    MATH  MathSciNet  Google Scholar 

  11. Sun, B.Y., Li, J., Wu, D.D., Zhang, X.M., Li, W.B.: Kernel discriminant learning for ordinal regression. IEEE Transactions on Knowledge and Data Engineering 22, 906–910 (2010)

    Article  Google Scholar 

  12. Chu, W., Keerthi, S.S.: Support vector ordinal regression. Neural Computation 19(3), 792–815 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gutiérrez, P.A., Pérez-Ortiz, M., Fernández-Navarro, F., Sánchez-Monedero, J., Hervás-Martínez, C.: An Experimental Study of Different Ordinal Regression Methods and Measures. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. LNCS, vol. 7209, pp. 296–307. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression. In: Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications (ISDA 2009), Pisa, Italy (2009)

    Google Scholar 

  15. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Drineas, P., Mahoney, M.W.: On the nyström method for approximating a gram matrix for improved kernel-based learning. J. Mach. Learn. Res. 6 (2005)

    Google Scholar 

  17. Braun, M.L., Buhmann, J.M., Müller, K.R.: On relevant dimensions in kernel feature spaces. J. Mach. Learn. Res. 9, 1875–(1908)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pérez-Ortiz, M., Gutiérrez, P.A., Cruz-Ramírez, M., Sánchez-Monedero, J., Hervás-Martínez, C. (2013). Kernelizing the Proportional Odds Model through the Empirical Kernel Mapping. In: Rojas, I., Joya, G., Gabestany, J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38679-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38679-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38678-7

  • Online ISBN: 978-3-642-38679-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics