Skip to main content

One Parameter Differential Evolution (OPDE) for Numerical Benchmark Problems

  • Conference paper
Advances in Swarm Intelligence (ICSI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7928))

Included in the following conference series:

  • 2789 Accesses

Abstract

Differential Evolution (DE) can be simplified in the sense that the number of existing parameter is decreased from two parameters to only one parameter. We eliminate the scaling factor, F, and replace this by a uniform random number within [0, 1]. As such, it is easy to tune the crossover rate, CR, through parameter sensitivity analysis. In this analysis, the algorithm is run for 50 trials from 0.1 to 1.0 with a step increment of 0.1 on 23 benchmark problems. Results show that using the optimal CR, there is room for improvement in some of the benchmark problems. With the advantage and simplicity of a single parameter, it is significantly easier to tune this parameter and thus take the full advantage of the algorithm. The proposed algorithm here has a significant benefit when applied to real-world problems as it saves time in obtaining the best parameter setting for optimal performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3, 124–141 (1999)

    Article  Google Scholar 

  2. Price, K., Storn, R.: Differential evolution – A simple and efficient heruistic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anyong, Q.: Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy. IEEE Trans. Antennas Propag. 51, 1251–1262 (2003)

    Article  Google Scholar 

  4. Ching-Tzong, S., Chu-Sheng, L.: Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution. IEEE Trans. Power Delivery 18, 1022–1027 (2003)

    Article  Google Scholar 

  5. Storn, R.: System design by constraint adaptation and differential evolution. IEEE Trans. Evol. Comput. 3, 22–34 (1999)

    Article  Google Scholar 

  6. Das, S., Abraham, A., Konar, A.: Automatic Clustering Using an Improved Differential Evolution Algorithm. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 38, 218–237 (2008)

    Article  Google Scholar 

  7. Grefenstette, J.J.: Optimization of Control Parameters for Genetic Algorithms. IEEE Transactions on Systems, Man and Cybernetics 16, 122–128 (1986)

    Article  Google Scholar 

  8. Smit, S.K., Eiben, A.E.: Comparing parameter tuning methods for evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 399–406 (2009)

    Google Scholar 

  9. Price, K.V.: Differential evolution: a fast and simple numerical optimizer. In: 1996 Biennial Conference of the North American Fuzzy Information Processing Society, NAFIPS, pp. 524–527 (1996)

    Google Scholar 

  10. Terkel, D.A., Semenov, M.A.: Analysis of convergence of an evolutionary algorthm with self-adaptation using a stochastic Lyapunov function. Evol. Comput. 11(4), 363–379 (2003)

    Article  Google Scholar 

  11. Yao, X., He, J.: Toward an analytic framework for analysing the computation time of evolutionary algorithms. Artificial Intell. 145(1-2) (2003)

    Google Scholar 

  12. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary Computation 10, 646–657 (2006)

    Article  Google Scholar 

  13. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential Evolution Using a Neighborhood-Based Mutation Operator. IEEE Transactions on Evolutionary Computation 13, 526–553 (2009)

    Article  Google Scholar 

  14. Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Congress on Evolutionary Computation, CEC 2004, vol. 1982, pp. 1980–1987 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kang, Y., Ting, T.O., Yang, XS., Cheng, S. (2013). One Parameter Differential Evolution (OPDE) for Numerical Benchmark Problems. In: Tan, Y., Shi, Y., Mo, H. (eds) Advances in Swarm Intelligence. ICSI 2013. Lecture Notes in Computer Science, vol 7928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38703-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38703-6_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38702-9

  • Online ISBN: 978-3-642-38703-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics