Skip to main content

Tracking the Performance Evolution of Blue Gene Systems

  • Conference paper
Supercomputing (ISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7905))

Included in the following conference series:

  • 2485 Accesses

Abstract

IBM’s Blue Gene supercomputer has evolved through three generations from the original Blue Gene/L to P to Q. A higher level of integration has enabled greater single-core performance, and a larger concurrency per compute node. Although these changes have brought with them a higher overall system peak-performance, no study has examined in detail the evolution of performance across system generations. In this work we make two significant contributions – that of providing a comparative performance analysis across Blue Gene generations using a consistent set of tests, and also in providing a validated performance model of the NEK-Bone proxy application. The combination of empirical analysis and the predictive performance model enable us to not only directly compare measured performance but also allow for a comparison of system configurations that cannot currently be measured. We provide insights into how the changing characteristics of Blue Gene have impacted on the application performance, as well as what future systems may be able to achieve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Green500, http://www.green500.org/

  2. Allen, F., et al.: Blue Gene: A Vision for Protein Science using a Petaflop Supercomputer. IBM Sys. J. 40(2), 310–327 (2001)

    Article  Google Scholar 

  3. Almasi, G., et al.: Demonstrating the Scalability of a Molecular Dynamics Application on a Petaflops Computer. Int. J. of Parallel Programming 30(4), 317–351 (2002)

    Article  Google Scholar 

  4. Almasi, G., et al.: Dissecting Cyclops: A Detailed Analysis of a Multithreaded Architecture. ACM SIGARCH Computer Architecture News 31(1), 26–38 (2003)

    Article  Google Scholar 

  5. Adiga, N.R., et al.: An Overview of the Blue Gene/L Supercomputer. In: Proc. IEEE/ACM Supercomputing, SC 2002, Baltimore (2002)

    Google Scholar 

  6. Chen, D., et al.: QCDOC: A 10-Teraflops Scale Computer for Lattice QCD. Nucl. Phys. B 94(1-3), 825–832 (2001)

    Article  Google Scholar 

  7. Boyle, P.A., Chen, D., et al.: QCDOC: A 10 Teraflops Computer for Tightly-Coupled Calculations. In: Proc. IEEE/ACM Supercomputing (SC 2004), Pittsbugh (2004)

    Google Scholar 

  8. Davis, K., Hoisie, A., Johnson, G., Kerbyson, D.J., Lang, M., Pakin, S., Petrini, F.: A Performance and Scalability Analysis of the BlueGene/L Architecture. In: SC 2004, Pittsburgh (2004)

    Google Scholar 

  9. Almasi, G., et al.: Unlocking the Performance of the BlueGene/L Supercomputer. In: Proc. IEEE/ACM Supercomputing (SC 2004), Pittsburgh (2004)

    Google Scholar 

  10. IBM Blue Gene Staff: Overview of the IBM Blue Gene/P Project. IBM J. Res. & Dev. (1/2), 199–220 (2008)

    Google Scholar 

  11. Haring, R.A., Ohmacht, M., Fox, T.W., et al.: The IBM Blue Gene/Q Compute Chip. IEEE Micro, 48–60 (2012)

    Google Scholar 

  12. Chen, D., Choudhury, A., Eisley, N., et al.: Looking Under the hood of the Blue Gene/Q Network. In: Proc. IEEE/ACM Supercomputing (SC 2012), Salt Lake City (2012)

    Google Scholar 

  13. https://cesar.mcs.anl.gov/content/software/nekbone

  14. H.: Terascale Spectral Element Algorithms and Implementations. In: Proc. IEEE/ACM Supercomputing (SC 1999), Portland (1999)

    Google Scholar 

  15. P-SNAP v1.2, http://www.c3.lanl.gov/pal/software

  16. McCalpin, J.: Memory bandwidth and machine balance in current high performance computers. In: IEEE Tech. Committee on Computer Architecture (TCCA), pp. 19–25 (1995)

    Google Scholar 

  17. Barker, K.J., Davis, K., Hoisie, A., Kerbyson, D.J., Lang, M., Pakin, S., Sancho, J.C.: Using performance modeling to design large-scale systems. IEEE Computer 42(11), 42–49 (2009)

    Article  Google Scholar 

  18. Chen, D., Eisley, N.A., Heidelberger, P., et al.: The IBM Blue Gene/Q Interconnection Fabric. IEEE Micro 32(1), 32–43 (2012)

    Article  Google Scholar 

  19. Chen, D., Eisley, N.A., Heidelberger, P., et al.: The IBM Blue Gene/Q Interconnection Network and Message Unit. In: Proc. IEEE/ACM Supercomputing, SC 2011, Seattle (2011)

    Google Scholar 

  20. Saini, S., Naraikin, A., Biswas, R., Barkai, D., Sandstrom, T.: Early Performance Evaluation of Nehalem Cluster Using Scientific and Engineering Applications. In: SC 2009, Portland (2009)

    Google Scholar 

  21. Hoisie, A., Johnson, G., Kerbyson, D.J., Lang, M., Pakin, S.: A Performance Comparison through Benchmarking and Modeling of Three Leading Supercomputers: Blue Gene/L, Red Storm, and Purple. In: Proc. IEEE/ACM Supercomputing (SC 2006), Tampa (2006)

    Google Scholar 

  22. Kerbyson, D.J., Hoisie, A.: Performance Modeling of the Blue Gene Architecture. In: IEEE John Vincent Atanasoff Int. Symp. on Modern Computing, Sofia, Bulgaria (2006)

    Google Scholar 

  23. Bhatele, A., Wesolowski, L., Bohm, E., Solomonik, E., Kale, L.V.: Understanding application performance via micro-benchmarks on three large supercomputers: Intrepid, Ranger and Jaguar. In: Int. J. of High Performance Computing Applications, IJHPCA (2010)

    Google Scholar 

  24. Rodrigues, R.F., et al.: The Structural Simulation Toolkit. ACM Sigmetrics Performance Evaluation Review 38(4), 37–42 (2011)

    Article  Google Scholar 

  25. Zheng, G., Kakulapati, G., Kale, L.V.: BigSim: A Parallel Simulator for Performance Prediction of Extremely Large Machines. In: Proc. IPDPS, Santa Fe (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kerbyson, D.J. et al. (2013). Tracking the Performance Evolution of Blue Gene Systems. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds) Supercomputing. ISC 2013. Lecture Notes in Computer Science, vol 7905. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38750-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38750-0_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38749-4

  • Online ISBN: 978-3-642-38750-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics