Abstract
In this paper, we study the random methods for parameterized problems. For the Parameterized P 2-Packing problem, by randomly partitioning the vertices, a randomized parameterized algorithm of running time O *(6.75k) is obtained, improving the current best result O *(8k). For the Parameterized Co-Path Packing problem, we study the kernel and randomized algorithm for the degree-bounded instance, and then by using the iterative compression technique, a randomized algorithm of running time O *(3k) is given for the Parameterized Co-Path Packing problem, improving the current best result O *(3.24k).
This work is supported by the National Natural Science Foundation of China under Grant (61232001, 61103033, 61173051), Postdoc Foundation of Central South University.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, Z.-Z., Fellows, M., Fu, B., Jiang, H., Liu, Y., Wang, L., Zhu, B.: A Linear Kernel for Co-Path/Cycle Packing. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 90–102. Springer, Heidelberg (2010)
Chen, J., Lu, S.: Improved parameterized set splitting algorithms: A probabilistic approach. Algorithmica 54(4), 472–489 (2008)
Chen, J., Lu, S., Sze, S.H., Zhang, F.: Improved algorithms for path, matching, and packing problems. In: Proc. of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2007), pp. 298–307 (2007)
Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genome. PLoS Comput. Biol. 4, e1000234 (2008)
De Bontridder, K., Halldórsson, B., Lenstra, J., Ravi, R., Stougie, L.: Approximation algorithms for the test cover problem. Math. Program., Ser. B 98, 477–491 (2003)
Fellows, M., Heggernes, P., Rosamond, F., Sloper, C., Telle, J.A.: Finding k disjoint triangles in an arbitrary graph. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 235–244. Springer, Heidelberg (2004)
Fernau, H., Raible, D.: A parameterized perspective on packing paths of length two. Journal of Combinatorial Optimization 18(4), 319–341 (2009)
Feng, Q., Wang, J., Chen, J.: Matching and P 2-Packing: Weighted Versions. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 343–353. Springer, Heidelberg (2011)
Fujito, T.: Approximating node-deletion problems for matroidal properties. J. Algorithms 31, 211–227 (1999)
Hassin, R., Rubinstein, S.: An approximation algorithm for maximum triangle packing. Discrete Appl. Math. 154, 971–979 (2006)
Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by the size of the cutset. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC 2011), pp. 469–478 (2011)
Marx, D.: Randomized Techniques for Parameterized Algorithms. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, p. 2. Springer, Heidelberg (2012)
Prieto, E., Sloper, C.: Looking at the stars. Theoretical Computer Science 351, 437–445 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Feng, Q., Wang, J., Li, S., Chen, J. (2013). Random Methods for Parameterized Problems. In: Du, DZ., Zhang, G. (eds) Computing and Combinatorics. COCOON 2013. Lecture Notes in Computer Science, vol 7936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38768-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-38768-5_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38767-8
Online ISBN: 978-3-642-38768-5
eBook Packages: Computer ScienceComputer Science (R0)