Abstract
In this paper we present a new fast algorithm for finding minimal reset words for finite synchronizing automata, which is a problem appearing in many practical applications. The problem is known to be computationally hard, so our algorithm is exponential in the worst case, but it is faster than the algorithms used so far and it performs well on average. The main idea is to use a bidirectional BFS and radix (Patricia) tries to store and compare subsets. Also a number of heuristics are applied. We give both theoretical and practical arguments showing that the effective branching factor is considerably reduced. As a practical test we perform an experimental study of the length of the shortest reset word for random automata with n ≤ 300 states and 2 input letters. In particular, we obtain a new estimation of the expected length of the shortest reset word \(\approx 2.5\sqrt{n-5}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 55–65. Springer, Heidelberg (2010)
Ananichev, D., Volkov, M.: Synchronizing monotonic automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 111–121. Springer, Heidelberg (2003)
Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule provides a computing machine with both data and fuel. Proceedings of the National Academy of Sciences 100(5), 2191–2196 (2003)
Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami. Matematicko-fyzikálny Časopis Slovenskej Akadémie Vied 14(3), 208–216 (1964) (in Slovak)
Chmiel, K., Roman, A.: COMPAS - A computing package for synchronization. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 79–86. Springer, Heidelberg (2011)
Devroye, L.: A note on the average depth of tries. Computing 28, 367–371 (1982)
Eppstein, D.: Reset sequences for monotonic automata. SIAM Journal on Computing 19, 500–510 (1990)
Gerbush, M., Heeringa, B.: Approximating minimum reset sequences. In: Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 154–162. Springer, Heidelberg (2011)
Higgins, P.: The range order of a product of i-transformations from a finite full transformation semigroup. Semigroup Forum 37, 31–36 (1988)
Jürgensen, H.: Synchronization. Information and Computation 206(9-10), 1033–1044 (2008)
Kari, J.: Synchronization and stability of finite automata. Journal of Universal Computer Science 8(2), 270–277 (2002)
Kudłacik, R., Roman, A., Wagner, H.: Effective synchronizing algorithms. Expert Systems with Applications 39(14), 11746–11757 (2012)
Morrison, D.R.: PATRICIA – practical algorithm to retrieve information coded in alphanumeric. Journal of the ACM 15, 514–534 (1968)
Olschewski, J., Ummels, M.: The complexity of finding reset words in finite automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 568–579. Springer, Heidelberg (2010)
Panneton, F., L’Ecuyer, P., Matsumoto, M.: Improved long-period generators based on linear recurrences modulo 2. ACM Transactions on Mathematical Software 32(1), 1–16 (2006)
Roman, A.: New algorithms for finding short reset sequences in synchronizing automata. In: International Enformatika Conference (Prague), pp. 13–17 (2005)
Roman, A.: Genetic algorithm for synchronization. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 684–695. Springer, Heidelberg (2009)
Sandberg, S.: Homing and synchronizing sequences. In: Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)
Skvortsov, E., Tipikin, E.: Experimental study of the shortest reset word of random automata. In: Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011. LNCS, vol. 6807, pp. 290–298. Springer, Heidelberg (2011)
Skvortsov, E., Zaks, Y.: Synchronizing random automata. Discrete Mathematics and Theoretical Computer Science 12(4), 95–108 (2010)
Trahtman, A.N.: A package TESTAS for checking some kinds of testability. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS, vol. 2608, pp. 228–232. Springer, Heidelberg (2003)
Trahtman, A.N.: An efficient algorithm finds noticeable trends and examples concerning the Černy conjecture. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 789–800. Springer, Heidelberg (2006)
Trahtman, A.N.: Modifying the upper bound on the length of minimal synchronizing word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 173–180. Springer, Heidelberg (2011)
Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Martín-Vide, C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kisielewicz, A., Kowalski, J., Szykuła, M. (2013). A Fast Algorithm Finding the Shortest Reset Words. In: Du, DZ., Zhang, G. (eds) Computing and Combinatorics. COCOON 2013. Lecture Notes in Computer Science, vol 7936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38768-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-38768-5_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38767-8
Online ISBN: 978-3-642-38768-5
eBook Packages: Computer ScienceComputer Science (R0)