Skip to main content

Parameterized Algorithms for Maximum Agreement Forest on Multiple Trees

  • Conference paper
Computing and Combinatorics (COCOON 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7936))

Included in the following conference series:

  • 1951 Accesses

Abstract

The Maximun Agreement Forest problem (maf) asks for a largest common subforest of a collection of phylogenetic trees. The maf problem on two binary phylogenetic trees has been studied extensively in the literature. In this paper, we present the first group of fixed-parameter tractable algorithms for the maf problem on multiple (i.e., two or more) binary phylogenetic trees. Our techniques work fine for the problem for both rooted trees and unrooted trees. The computational complexity of our algorithms is comparable with that of the known algorithms for two trees, and is independent of the number of phylogenetic trees for which a maximum agreement forest is constructed.

This work is supported by the National Natural Science Foundation of China under Grants (61103033, 61173051, 70921001), and the Doctoral Discipline Foundation of Higher Education Institution of China under Grant (20090162110056).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allen, B., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary trees. Annals of Combinatorics 5(1), 1–15 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bordewich, M., McCartin, C., Semple, C.: A 3-approximation algorithm for the subtree distance between phylogenies. J. Discrete Algorithms 6(3), 458–471 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Annals of Combinatorics 8(4), 409–423 (2005)

    Article  MathSciNet  Google Scholar 

  4. Chataigner, F.: Approximating the maximum agreement forest on k trees. Information Processing Letters 93, 239–244 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J., Fan, J.-H., Sze, S.-H.: Improved algoithms for the maximum agreement forest problem on general trees. In: WG 2013 (submitted, 2013)

    Google Scholar 

  6. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)

    Book  Google Scholar 

  7. Hallett, M., McCartin, C.: A faster FPT algorithm for the maximum agreement forest problem. Theory of Computing Systems 41(3), 539–550 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Discrete Applied Mathematics 71, 153–169 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hodson, F., Kendall, D., Tauta, P. (eds.): The recovery of trees from measures of dissimilarity. Mathematics in the Archaeological and Historical Sciences, pp. 387–395. Edinburgh University Press, Edinburgh (1971)

    Google Scholar 

  10. Li, M., Tromp, J., Zhang, L.: On the nearest neighbour interchange distance between evolutionary trees. Journal on Theoretical Biology 182(4), 463–467 (1996)

    Article  Google Scholar 

  11. Robinson, D., Foulds, L.: Comparison of phylogenetic trees. Mathematical Biosciences 53(1-2), 131–147 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rodrigues, E., Sagot, M., Wakabayashi, Y.: The maximum agreement forest problem: approximation algorithms and computational experiments. Theoretical Computer Science 374(1-3), 91–110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Swofford, D., Olsen, G., Waddell, P., Hillis, D.: Phylogenetic inference. In: Molecular Systematics, 2nd edn., pp. 407–513. Sinauer Associates (1996)

    Google Scholar 

  14. Whidden, C., Beiko, R., Zeh, N.: Fixed-parameter and approximation algorithms for maximum agreement forests. CoRR. abs/1108.2664 (2011)

    Google Scholar 

  15. Whidden, C., Zeh, N.: A unifying view on approximation and FPT of agreement forests. In: Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 390–402. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, F., Chen, J., Feng, Q., Wang, J. (2013). Parameterized Algorithms for Maximum Agreement Forest on Multiple Trees. In: Du, DZ., Zhang, G. (eds) Computing and Combinatorics. COCOON 2013. Lecture Notes in Computer Science, vol 7936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38768-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38768-5_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38767-8

  • Online ISBN: 978-3-642-38768-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics