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Abstract
We show that the subword complexity function ρx(n), which counts the number of distinct
factors of length n of a sequence x, is k-synchronized in the sense of Carpi if x is k-automatic.
As an application, we generalize recent results of Goldstein. We give analogous results for the
number of distinct factors of length n that are primitive words or powers. In contrast, we show
that the function that counts the number of unbordered factors of length n is not necessarily
k-synchronized for k-automatic sequences.
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1 Introduction

We are concerned with the representation of integers in base k, where k ≥ 2 is an integer.
We let Σk = {0, 1, 2, . . . , k− 1}, and we let (n)k denote the canonical representation of n in
base k, starting with the most significant digit, and without leading zeroes. If x ∈ Σ∗k, we
let [x]k denote the integer represented by x (where x is allowed to have leading zeroes). To
represent a pair of integers (m,n), we use words over the alphabet Σk×Σk. For such a word
x, we let πi(x) to be the projection onto the i’th coordinate. The canonical representation
(m,n)k is defined to be the word x such that [π1(x)]k = m and [π2(x)]k = n, and having no
leading [0, 0]’s. For example (43, 17)2 = [1, 0][0, 1][1, 0][0, 0][1, 0][1, 1].

Recently, Arturo Carpi and his co-authors [6, 4, 5] introduced a very interesting class of
sequences that are computable by automata in a novel fashion: the class of k-synchronized
sequences. Let (f(n))n≥0 be a sequence taking values in N. They call such a sequence
k-synchronized if there is a deterministic finite automaton M accepting the base-k repre-
sentation of the graph of f , namely {(n, f(n))k : n ≥ 0}.

Sequences that are k-synchronized are “halfway between” the class of k-automatic se-
quences, introduced by Cobham [9] and studied in many papers; and the class of k-regular
sequences, introduced by Allouche and Shallit [1, 2]. They are particularly interesting for
two reasons. If a sequence (f(n)) is k-synchronized, then
(a) we immediately get a bound on its growth rate: f(n) = O(n);
(b) we immediately get a linear-time algorithm for efficiently calculating f(n).

Result (a) can be found in [6, Prop. 2.5]. We now state and prove result (b).

I Theorem 1. Suppose (f(n))n≥0 is k-synchronized. Then there is an algorithm that, given
the base-k representation of n, will compute the base-k representation of f(n) in O(logn)
time.

Proof. We know there is a DFAM = (Q,Σk×Σk, δ, q0, F ) accepting L = {(n, f(n))k : n ≥
0}. From result (a) above we know that f(n) ≤ Cn, for some constant C, so if (n, f(n))k

is accepted, then the first component is 0sw for some s ≤ logk C, where w is the canonical
base-k representation of n. Let N = s+ |w|. We now create a directed graph out of N + 1
copies of the transition graph for M , by starting at the final states of M and tracing a path
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backwards, using the reversed transitions of M . This path is chosen so the first component
of the labels encountered form wR0s and the second component is arbitrary. The reslting
graph has at most O(N) transitions and vertices. There will be only one path of length l
with |w| ≤ l ≤ N that leads to the initial state q0, and this can be found with depth-first
search in O(N) time. Then, reading the corresponding labels of the second components in
the forward direction gives the base-k representation of f(n). J

In this paper, we are concerned with infinite words over a finite alphabet. Let x =
a0a1a2 · · · be an infinite word. By x[m..n] we mean the factor amam+1 · · · an of x of length
n−m+ 1. The subword complexity function ρx(n) counts the number of distinct factors of
length n.

An infinite word or sequence x is said to be k-automatic if there is an automaton with
outputs associated with the states that, on input (n)k, reaches a state with output x[n]. In
this paper we show that if x is a k-automatic sequence, then the subword complexity ρx(n)
is k-synchronized. As an application, we generalize and simplify recent results of Goldstein
[13, 14]. Furthermore, we obtain analogous results for the number of length-n primitive
words and the number of length-n powers.

We remark that there are a number of quantities about k-automatic sequences already
known to be k-synchronized. These include

the separator sequence of a non-ultimately-periodic k-automatic sequence [6];
the repetitivity index of a k-automatic sequence [4];
the recurrence function of a k-automatic sequence [8];
the “appearance” function of a k-automatic sequence [8].

The latter two examples were not explicitly stated to be k-synchronized in [8], but the result
follows immediately from the proofs in that paper.

2 Subword complexity

Cobham [9] proved that if x is a k-automatic sequence, then ρx(n) = O(n). Cassaigne [7]
proved that any infinite word x satisfying ρx(n) = O(n) also satisfies ρx(n + 1) − ρx(n) =
O(1). Carpi and D’Alonzo [5] showed that the subword complexity function ρx(n) is a
k-regular sequence.

Charlier, Rampersad, and Shallit [8] found this result independently, using a somewhat
different approach. They used the following idea. Call an occurrence of the factor t =
x[i..i + n − 1] “novel” if t does not appear as a factor of x[0..i + n − 2]. In other words,
the leftmost occurrence of t in x is at position i. Then the number of factors of length n

in x is equal to the number of novel occurrences of factors of length n. The property that
x[i..i+ n− 1] is novel can be expressed as a predicate, as follows:

{(n, i)k : ∀j, 0 ≤ j < i x[i..i+ n− 1] 6= x[j..j + n− 1]} =
{(n, i)k : ∀j, 0 ≤ j < i ∃m, 0 ≤ m < n x[i+m] 6= x[j +m]}. (1)

As shown in [8], the base-k representation of the integers satisfying any predicate of
this form (expressible using quantifiers, integer addition and subtraction, indexing into a k-
automatic sequence x, logical operations, and comparisons) can be accepted by an explicitly-
constructable deterministic finite automaton. From this, it follows that the sequence ρx(n) is
k-regular, and hence can be computed explicitly in terms of the product of certain matrices
and vectors depending on the base-k expansion of n.
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We show that, in fact, the subword complexity function ρx(n) is k-synchronized. The
main observation needed is the following (Theorem 3): in any sequence of linear complexity,
the novel occurrences of factors are “clumped together” in a bounded number of contiguous
blocks. This makes it easy to count them.

More precisely, let x be an infinite word and for any n consider the set of novel occurrences

Ex(n) := {i : the occurrence x[i..i+ n− 1] is novel }.

We consider how Ex(n) evolves with increasing n.
As an example, consider the Thue-Morse sequence

t = t0t1t2 · · · = 0110100110010110 · · · ,

defined by letting tn be the number of 1’s in the binary expansion of n, taken modulo 2.
The gray squares in the rows of of Figure 1 depict the members of Et(n) for the Thue-Morse
sequence for 1 ≤ n ≤ 9.

i 0 1 2 4 5 6 7 8 9 10 11 12 13 14 15

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

n = 1

16 17 18 19 20 21 22 23 24

1 0 0 1 0 1 1 0 0

4
5
6
7
8
9

3

t[i]

3

2

Figure 1 Evolution of novel occurrences of factors in the Thue-Morse sequence

I Lemma 2. Let x be an infinite word. If the factor of length n beginning at position i is a
novel occurrence, so is
(a) the factor of length n+ 1 beginning at position i;
(b) the factor of length n+ 1 beginning at position i− 1 (for i ≥ 1).

Proof. (a) Suppose the factor of length n + 1 also occurs at some position j < i. Then
the factor of length n also occurs at position j, contradicting the fact that it was a novel
occurrence at i.

(b) Suppose the factor of length n+ 1 beginning at position i− 1 occurs at some earlier
position j < i− 1. We can write the factor as ax, where a is a single letter and x is a word,
so the factor of length n beginning at position i must also occur at position j + 1 < i. But
then it is not a novel occurrence. J

I Theorem 3. Let x be an infinite word. For n ≥ 1, the number of contiguous blocks in
Ex(n) is at most ρx(n)− ρx(n− 1) + 1.

Proof. We prove the claim by induction on n. For n = 1 the claim says there are at most
ρx(1) contiguous blocks, which is evidently true, since there are at most ρx(1) novel factors
of length 1.
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Now assume the claim is true for all n′ < n; we prove it for n. Consider the evolution of
the novel occurrences of factors in going from length n− 1 to n. Every occurrence that was
previously novel is still novel, and furthermore in every contiguous block except the first, we
get novel occurrences at one position to the left of the beginning of the block. So if row n−1
has t contiguous blocks, then we get t− 1 novel occurrences at the beginning of each block,
except the first. (Of course, the first block begins at position 0, since any factor beginning
at position 0 is novel, no matter what the length is.) The remaining ρ(n)−ρ(n−1)− (t−1)
novel occurrences could be, in the worst case, in their own individual contiguous blocks.
Thus row n has at most t + ρ(n) − ρ(n − 1) − (t − 1) = ρ(n) + ρ(n − 1) + 1 contiguous
blocks. J

In our Thue-Morse example, it is well-known that ρt(n)− ρt(n− 1) ≤ 4, so the number
of contiguous blocks in any row is at most 5. This is achieved, for example, for n = 6.

I Example 4. We give an example of a recurrent infinite word over a finite alphabet where
the number of contiguous blocks in Ex(n) is unbounded. Consider the word

w =
∏
n≥1

(n)2 = 110111001011101111000 · · · .

Then for each n ≥ 5 the first occurrence of each of the words 0n−11, 0n−211, . . . , 021n−2

have a non-novel occurrence immediately following them, which shows there at at least n−2
blocks in Ew(n).

I Corollary 5. If ρx(n) = O(n), then there is a constant C such that every row Ex(n) in
the evolution of novel occurrences consists of at most C contiguous blocks.

Proof. By the result of Cassaigne [7], we know that there exists a constant C such that
ρx(n)− ρx(n− 1) ≤ C − 1. By Theorem 3, we know there are at most C contiguous blocks
in any Ex(n). J

I Theorem 6. Let x be a k-automatic sequence. Then its subword complexity function ρx(n)
is k-synchronized.

Proof. Following [8], it suffices to show how to accept the language

{(n,m)k : n ≥ 0 and m = ρx(n)}

with a finite automaton. Here is a sketch of the argument. From our results above, we know
that there is a finite constant C ≥ 1 such that the number of contiguous blocks in any row of
the factor evolution diagram is bounded by C. So we simply “guess” the endpoints of every
block and then verify that each factor of length n starting at the positions inside blocks is
a novel occurrence, while all other factors are not. Finally, we verify that m is the sum of
the sizes of the blocks.

To fill in the details, we observe above in (1) that the predicate “the factor of length
n beginning at position i of x is a novel occurrence” is solvable by a finite automaton.
Similarly, given endpoints a, b and n, the predicates “every factor of length n beginning at
positions a through b is a novel occurrence” and “no factor of length n beginning at positions
a through b is a novel occurrence” are also solvable by a finite automaton. The length of
each block is just b−a+ 1, and it is easy to create an automaton that will check if the sums
of the lengths of the blocks equals m, which is supposed to be ρx(n). J

Applying Theorem 1 we get
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I Corollary 7. Given a k-automatic sequence x, there is an algorithm that, on input n in
base k, will produce ρx(n) in base k in time O(logn).

As another application, we can recover and improve some recent results of Goldstein [13,
14]. He showed how to compute the quantities lim supn≥1 ρx(n)/n and lim infn≥1 ρx(n)/n for
the special case of k-automatic sequences that are the fixed points of k-uniform morphisms
related to certain groups. Corollary 8 below generalizes these results to all k-automatic
sequences.

I Corollary 8. There is an algorithm, that, given a k-automatic sequence x, will compute
supn≥1 ρx(n)/n, lim supn≥1 ρx(n)/n, and infn≥1 ρx(n)/n, lim infn≥1 ρx(n)/n.

Proof. We already showed how to construct an automaton accepting {(n, ρx(n))k : n ≥ 1}.
Now we just use the results from [17, 16]. Notice that the lim sup corresponds to what is
called the largest “special point” in [16]. J

I Example 9. Continuing our example of the Thue-Morse sequence, Figure 2 displays a
DFA accepting

{(n, ρt(n))k : n ≥ 0}.

Inputs are given with the most significant digit first; the “dead” state and transitions leading
to it are omitted.

Given an infinite word x, we can also count the number of contiguous blocks in each Ex(n)
for n ≥ 0. (For the Thue-Morse sequence this gives the sequence 1, 1, 2, 1, 3, 1, 5, 3, 3, 1, . . ..)
If x is k-automatic, then this sequence is also, as the following theorem shows:

I Theorem 10. If x is k-automatic then the sequence (e(n))n≥0 counting the number of
contiguous blocks in the n’th step Ex(n) of the evolution of novel occurrences of factors in
x is also k-automatic.

Proof. Since we have already shown that the number of contiguous blocks is bounded by
some constant C if x is k-automatic, it suffices to show for each i ≤ C we can create an
automaton to accept the language {(n)k : Ex(n) has exactly i contiguous blocks }. To do
so, on input n in base k we guess the endpoints of the i contiguous nonempty blocks, verify
that the length-n occurrences at those positions are novel, and that all other occurrences
are not novel. J
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Figure 2 Automaton computing the subword complexity of the Thue-Morse sequence

I Example 11. Figure 3 below gives the automaton computing the number e(n) of contigu-
ous blocks of novel occurrences of length-n factors for the Thue-Morse sequence. Here is a
brief table:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
e(n) 1 1 2 1 3 1 5 3 3 1 5 5 5 3 3

3 Implementation

We wrote a program that, given an automaton generating a k-automatic sequence x, will
produce a deterministic finite automaton accepting the language {(n, ρx(n))k : n ≥ 0}. We
used the following variant which does not require advance knowledge of the bound on the
first difference of ρx(n):
1. Construct an automaton R that accepts (n, s, e, `) if, for factors of length n, the next

contiguous block of novel occurrences after position s ends at position e and has length
`. If there are no blocks past s, accept (n, s, s, 0).

2. Construct an automaton M0 that accepts (n, 0, 0).
3. Construct an automaton Mj+1 that accepts (n, S, e) if there exist s and S′ such that

(i) Mj accepts (n, S′, s)
(ii) R accepts (n, s, e, S − S′).
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4. If Mj+1 = Mj then we are done. We create an automaton that accepts (n, S) if there
exists e such that Mj accepts (n, S, e).

1 1

2

1

3

1

5

3

5
0 0

1

0

1

0

1

0

1

0,1 0,1

0

1

0,1

1

Figure 3 Automaton computing number of contiguous blocks of novel occurrences of length-n
factors in the Thue-Morse sequence

Besides the automaton depicted in Figure 1, we ran our program on the paperfolding
sequence [11] and the so-called “period-doubling sequence” [10]. The results are depicted
below in Figures 4 and 5.

4 Powers and primitive words

Let w be a nonempty word. We say w is a power if there exists a word x and an integer k ≥ 2
such that w = xk; otherwise we say w is primitive. Given a word z, there is a unique way
to write it as yi, where y is primitive and i is an integer ≥ 1; this y is called the primitive
root of z. Thus, for example, the primitive root of murmur is mur.

We say w = a1 · · · an has a period p if ai = ai+p for 1 ≤ i ≤ n − p. Thus, for example,
alfalfa has period 3. It is easy to see that a word w is a power if and only if it has a period
p such that p < |w| and p | |w|.

Two finite words x, y are conjugates if one is a cyclic shift of the other; in other words, if
there exist words u, v such that x = uv and y = vu. For example, enlist is a conjugate of
listen. As is well-known, every conjugate of a power of a word x is a power of a conjugate
of x. The lexicographically least conjugate of a primitive word is called a Lyndon word. We
call the lexicographically least conjugate of the primitive root of x the Lyndon root of x.

The following lemma says that if we consider the starting positions of length-n powers in
a word x, then there must be large gaps between contiguous blocks of such starting positions.

I Lemma 12. Let z be a finite or infinite word, and let n ≥ 2 be an integer. Suppose there
exist integers i, j such that
(a) w1 := z[i..i+ n− 1] is a power;
(b) w2 := z[j..j + n− 1] is a power;
(c) i < j ≤ i+ n/3.
Then z[t..t − n − 1] is a power for i ≤ t ≤ j. Furthermore, if x1 is the Lyndon root of w1,
then x1 is also the Lyndon root of each word z[t..t− n− 1].
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Figure 4 Automaton computing the subword complexity of the paperfolding sequence

Figure 5 Automaton computing the subword complexity of the period-doubling sequence
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Proof. Let x1 be the primitive root of w1 and x2 be the primitive root of w2. Since x1 and
x2 are powers, there exist integers p1, p2 ≥ 2 such that w1 = xp1

1 and w2 = xp2
2 .

Since w1 and w2 are both of length n, and since their starting positions are related by
i < j ≤ i+ n/3, it follows that the word v := z[j..i+ n− 1] is common to both w1 and w2,
and |v| = i+ n− j ≥ i+ 2n/3 + n/3− j ≥ 2n/3.

Now there are three cases to consider:
(a) |x1| > |x2|;
(b) |x1| < |x2|;
(c) |x1| = |x2|.

Case (a): We must have p2 > p1 ≥ 2, so p2 ≥ 3. Since v is a suffix of w1, it has period
|x1| ≤ n/2. Since v is a prefix of w2, it has period |x2| ≤ n/3. Then |v| ≥ 2n/3 ≥ |x1|+ |x2|.
By a theorem of Fine and Wilf [12], it now follows that v, and hence x1, has period p :=
gcd(|x1|, |x2|) ≤ |x2| < |x1|. Now p is less than |x1| and also divides it, so this means x1 is
a power, a contradiction, since we assumed x1 is primitive. So this case cannot occur.

Case (b) gives a similar contradiction.
Case (c): We have p1 = p2 ≥ 2. Then the last occurrence of x1 in w1 lies inside x2

2, and
so x1 is a conjugate of x2. Hence w1 is a conjugate of w2. It now follows that z[t..t+ n− 1]
is a conjugate of w1 for every t, i ≤ t ≤ j. But the conjugate of a power is itself a power,
and we are done. J

I Remark. The bound of n/3 in the statement of Lemma 12 is best possible, as shown by
the following class of examples. Let h be the morphism that maps 1→ 21 and 2→ 22, and
consider the word

hi(122122121212).

This word is of length 12 ·2i, and contains squares of length 3 ·2i+1 starting in the first 3 ·2i

positions, and cubes of length 3 · 2i+1 ending in the last 2i + 1 positions. This achieves a
gap of n/3 + 1 infinitely often.

Now, given an infinite word x, we define a function αx(n), the appearance function, to
be the least index i such that every length-n factor of x appears in the prefix x[0..i+n− 1];
see [3, §10.10].

I Theorem 13. If x is a k-automatic sequence, then αx(n) = O(n).

Proof. First, we show that the appearance function is k-synchronized. It suffices to show
that there is an automaton accepting {(n,m)k : m = αx(n)}. To see this, note that on
input (n,m)k we can check that

for all i ≥ 0 there exists j, 0 ≤ j ≤ m such that x[i..i+ n− 1] = x[j..j + n− 1]; and
for all l < m we have x[m..m+ n− 1] 6= x[l..l + n− 1].

From [6, Prop. 2.5] we know k-synchronized functions are O(n). J

As before, we consider maximal blocks of novel occurrences of length-n powers in x. Our
goal is to prove

I Lemma 14. If x is k-automatic, then there are only a constant number of such blocks.

Proof. To begin with, we consider maximal blocks of length-n powers in x (not considering
whether they are novel occurrences). From Theorem 13 we know that every length-n factor
must occur at a position < Cn, for some constant C (depending on x). We first argue that
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the number of maximal blocks of length-n powers, up to the position of the last length-n
power to occur for the first time, is at most 3C.

Suppose there ≥ 3C + 1 such blocks. Then Lemma 12 says that any two such blocks
must be separated by at least n/3 positions. So the first occurrence of the last factor to
occur occurs at a position ≥ (3C)(n/3) = Cn, a contradiction.

So using a constant number of blocks, in which each position of each block starts a
length-n factor that is a power, we cover the starting positions of all such factors. It now
remains to process these blocks to remove occurrences of length-n powers that are not novel.

The first thing we do is remove from each block the positions starting length-n factors
that have already occurred in that block. This has the effect of truncating long blocks. The
new blocks have the property that each factor occurring at the starting positions in the
blocks never appeared before in that block.

Above we already proved that inside each block, the powers that begin at each position
are all powers of some conjugate of a fixed Lyndon word. Now we process the blocks
associated with the same Lyndon root together, from the first (leftmost) to the last. At
each step, we remove from the current block all the positions where length-n factors begin
that have appeared in any previous block. When all blocks have been processed, we need
to see that there are still at most a constant number of contiguous blocks remaining.

Suppose the associated Lyndon root is y, with |y| = d. Each position in a block is the
starting position of a power of a conjugate of y, and hence corresponds to a right rotation
of y by some integer i, 0 ≤ i < d. Thus each block Bj actually corresponds to some Ij that
is a contiguous subblock of 0, 1, . . . , d− 1 (thought of as arranged in a circle).

As we process the blocks associated with y from left to right we replace Ij with I ′j :=
Ij − (I1 ∪ · · · ∪ Ij−1). Now if I ⊆ {0, 1, . . . , d− 1} is a union of contiguous subblocks, let
#I be the number of contiguous subblocks making up I. We claim that

#I ′1 + #I ′2 + · · ·+ #I ′n + #(
⋃

1≤i≤n

I ′i) ≤ 2n. (2)

To see this, suppose that when we set I ′n := In − (I1 ∪ · · · ∪ In−1), the subblock In

has an intersection with t of the lower-numbered subblocks. Forming the union (
⋃

1≤i≤n I
′
i)

then obliterates t subblocks and replaces them with 1. But I ′n has t− 1 new subblocks, plus
at most 2 at either edge (see Figure 6). This means that the left side of (2) increases by at
most (1− t) + (t− 1) + 2 = 2. Doing this n times gives the result.

Ij

I ′j

⋃
1≤i≤j−1 I ′i

Figure 6 How the number of blocks changes

Now at the end of the procedure there will be at least one interval in the union of all the
Ii, so #I ′1 + #I ′2 + · · ·+ #I ′n ≤ 2n− 1, and we have proved (2).

Earlier we showed that there are at most 3C maximal blocks of length-n powers, up to
the position of the last length-n power to occur for the first time. Then, after processing
these blocks to remove positions corresponding to factors that occurred earlier, we will have
at most 2(3C) = 6C blocks remaining. J
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I Corollary 15. If x is k-automatic, then
the function counting the number of distinct length-n factors that are powers is k-
synchronized;
the function counting the number of distinct length-n factors that are primitive words is
k-synchronized.

Proof. Suppose x is k-automatic, and generated by the DFAO M . From the Lyndon-
Schützenberger theorem [15], we know that a word x is a power if and only if there exist
nonempty words y, z such that x = yz = zy. Thus, we can express the predicate P (i, j) :=
“x[i..j] is a power” as follows: “there does not exist d, 0 < d < j − i + 1, such that
x[i..j − d] = x[i + d..j] and x[j − d + 1..j] = x[i..i + d − 1]”. Furthermore, we can express
the predicate P ′(i, n) := “x[i..i+ n− 1] is a length-n power and the first occurrence of that
power in x”, as

P (i, i+ n− 1) ∧ (∀i′, 0 ≤ i′ < i, ¬P (i′, i′ + n− 1)).

From Lemma 14 we know that the novel occurrences of length-n powers are clustered into
a finite number of blocks. Then, as in the proof of Theorem 6, we can guess the endpoints
of these blocks, and verify that the length-n factors beginning at the positions inside the
blocks are novel occurrences of powers, while those outside are not, and sum the lengths of
the blocks, using a finite automaton built from M . Thus, the function counting the number
of length-n powers in x is k-synchronized.

The number of length-n primitive words in x is then also k-synchronized, since it is
expressible as the total number of words of length n, minus the number of length-n powers.

J

I Remark. Using the technique above, we can prove analogous results for the functions
counting the number of length-n words that are α-powers, for any fixed rational number
α > 1.

5 Unsynchronized sequences

It is natural to wonder whether other aspects of k-automatic sequences are always k-
synchronized. We give an example that is not.

We say a word w is bordered if it has a nonempty prefix, other than w itself, that is also
a suffix. Alternatively, w is bordered if it can be written in the form w = tvt, where t is
nonempty. Otherwise a word is unbordered.

Charlier et al. [8] showed that ux(n), the number of unbordered factors of length n of
a sequence x, is k-regular if x is k-automatic. They also gave a conjecture for recursion
relations defining ut(n) where t is the Thue-Morse sequence; this conjecture has recently
been verified by Goč and Shallit.

We give here an example of a k-automatic sequence where the number of unbordered
factors of length n is not k-synchronized.

Consider the characteristic sequence of the powers of 2:

c := 011010001000000010 · · · .

I Theorem 16. The sequence c is 2-automatic, but the function uc(n) counting the number
of unbordered factors is not 2-synchronized.
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Proof. It is not hard to verify that c is 2-automatic and that c has exactly r+2 unbordered
factors of length 2r+1, for r ≥ 2 —namely, the factors beginning at positions 2i for 0 ≤ i ≤ r,
and the factor beginning at position 2r + 1. However, if uc(n) were 2-synchronized, then
reading an input where the first component looks like 0i10r1 (and hence a representation
of 2r−1 + 1) for large r would force the transitions to enter a cycle. If the corresponding
transitions for the second component contained a nonzero entry, this would force uc(n) to
grow linearly with n when n is of the form 2r + 1. Otherwise, the corresponding transitions
for the second component are just 0’s, in which case uc(n) is bounded above by a constant,
for n of the form 2r + 1. Both cases lead to a contradiction. J
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