Skip to main content

Proof of a Phase Transition in Probabilistic Cellular Automata

  • Conference paper
Developments in Language Theory (DLT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7907))

Included in the following conference series:

Abstract

Cellular automata are a model of parallel computing. It is well known that simple deterministic cellular automata may exhibit complex behaviors such as Turing universality [3,13] but only few results are known about complex behaviors of probabilistic cellular automata.

Several studies have focused on a specific probabilistic dynamics: α-asynchronism where at each time step each cell has a probability α to be updated. Experimental studies [5] followed by mathematical analysis [2,4,7,8] have permitted to exhibit simple rules with interesting behaviors. Among these behaviors, most of these studies conjectured that some cellular automata exhibit a polynomial/exponential phase transition on their convergence time, i.e. the time to reach a stable configuration. The study of these phase transitions is crucial to understand the behaviors which appear at low synchronicity. A first analysis [14] proved the existence of the exponential phase in cellular automaton FLIP-IF-NOT-ALL-EQUAL but failed to prove the existence of the polynomial phase. In this paper, we prove the existence of a polynomial/exponential phase transition in a cellular automaton called FLIP-IF-NOT-ALL-0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A.: Collision-Based Computing. Springer (2002)

    Google Scholar 

  2. Chassaing, P., Gerin, L.: Asynchronous cellular automata and brownian motion. In: Proc. of AofA 2007. DMTCS Proceedings, vol. AH, pp. 385–402 (2007)

    Google Scholar 

  3. Cook, M.: Universality in elementary cellular automata. Complex System 15, 1–40 (2004)

    MATH  Google Scholar 

  4. Schabanel, N., Regnault, D., Thierry, É.: Progresses in the analysis of stochastic 2D cellular automata: A study of asynchronous 2D minority. Theoretical Computer Science 410, 4844–4855 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fatès, N.: Asynchronism induces second order phase transitions in elementary cellular automata. Journal of Cellular Automata 4(1), 21–38 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Fatès, N.: Stochastic cellular automata solve the density classification problem with an arbitrary precision. In: Proc. of STACS 2011, pp. 284–295 (2011)

    Google Scholar 

  7. Fatès, N., Morvan, M., Schabanel, N., Thierry, É.: Fully asynchronous behavior of double-quiescent elementary cellular automata. Theoretical Computer Science 362, 1–16 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fatès, N., Regnault, D., Schabanel, N., Thierry, É.: Asynchronous behavior of double-quiescent elementary cellular automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 455–466. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Gács, P.: Reliable cellular automata with self-organization. Journal of Statistical Physics 103(1/2), 45–267 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Land, M., Belew, R.K.: No perfect two-state cellular automata for density classification exists. Physical Review Letters 74, 5148–5150 (1995)

    Article  Google Scholar 

  11. Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization problem. Theoretical Computer Science 50(2), 183–238 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mossel, E., Roch, S.: Slow emergence of cooperation for win-stay lose-shift on trees. Machine Learning 67(1-2), 7–22 (2006)

    Article  Google Scholar 

  13. Ollinger, N., Richard, G.: 4 states are enough! Theoretical Computer Science 412, 22–32 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Regnault, D.: Directed percolation arising in stochastic cellular automata analysis. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 563–574. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Toom, A.: Stable and attractive trajectories in multicomponent systems. Advances in Probability 6, 549–575 (1980)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Regnault, D. (2013). Proof of a Phase Transition in Probabilistic Cellular Automata. In: Béal, MP., Carton, O. (eds) Developments in Language Theory. DLT 2013. Lecture Notes in Computer Science, vol 7907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38771-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38771-5_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38770-8

  • Online ISBN: 978-3-642-38771-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics