Skip to main content

Real-Time Reactive Biped Characters

Staying Upright and Balanced

  • Conference paper
Transactions on Computational Science XVIII

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 7848))

Abstract

In this paper, we present a real-time technique of generating reactive balancing biped character motions for used in time critical systems, such as games. Our method uses a low-dimensional physics-based model to provide key information, such as foot placement and postural location, to control the movement of a fully articulated virtual skeleton. Furthermore, our technique uses numerous approximation techniques, such as comfort reasoning and foot support area, to mimic real-world humans in real-time that can respond to disturbances, such as pushes or pulls. We demonstrate the straightforwardness and robustness of our technique by means of a numerous of simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kenwright, B.: Responsive Biped Character Stepping: When Push Comes to Shove. In: 2012 International Conference on Cyberworlds, pp. 151–156 (September 2012)

    Google Scholar 

  2. Singh, S., Kapadia, M., Reinman, G., Faloutsos, P.: Footstep navigation for dynamic crowds. In: Computer Animation and Virtual Worlds, pp. 151–158 (April 2011)

    Google Scholar 

  3. Wu, C., Zordan, V.: Goal-directed stepping with momentum control. In: ACM SIGGRAPH/Eurographics Symp. on Computer Animation, pp. 113–118 (2010)

    Google Scholar 

  4. Badler, N.I., Palmer, M.S., Bindiganavale, R.: Animation control for real-time virtual humans. Communications of the ACM 42(8), 64–73 (1999)

    Article  Google Scholar 

  5. Perlin, K.: Real time responsive animation with personality. IEEE Transactions on Visualization and Computer Graphics 1(1), 5–15 (1995)

    Article  Google Scholar 

  6. Kenwright, B.: Generating Responsive Life-Like Biped Characters. In: The Third Workshop on Procedural Content Generation in Games, pp. 1–8 (May 2012)

    Google Scholar 

  7. Ye, Y., Liu, C.K.: Animating responsive characters with dynamic constraints in near-unactuated coordinates. ACM Transactions on Graphics 27(5), 1 (2008)

    Article  MathSciNet  Google Scholar 

  8. Lee, J., Chai, J., Reitsma, P., Hodgins, J.: Interactive control of avatars animated with human motion data. In: SIGGRAPH 2002 Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, vol. 21(3), pp. 491–500 (July 2002)

    Google Scholar 

  9. Tsai, Y.-Y., Lin, W.-C., Cheng, K.B., Lee, J., Lee, T.-Y.: Real-time physics-based 3D biped character animation using an inverted pendulum model. IEEE Transactions on Visualization and Computer Graphics 16(2), 325–337 (2010)

    Article  Google Scholar 

  10. Kenwright, B., Davison, R., Morgan, G.: Dynamic Balancing and Walking for Real-Time 3D Characters. In: Allbeck, J.M., Faloutsos, P. (eds.) MIG 2011. LNCS, vol. 7060, pp. 63–73. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Komura, T., Leung, H., Kuffner, J.: Animating reactive motions for biped locomotion. In: VRST 2004: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 32–40. ACM Press, New York (2004)

    Chapter  Google Scholar 

  12. Zordan, V.B., Hodgins, J.K.: Motion capture-driven simulations that hit and react. In: Proceedings ACM SIGGRAPH Symposium on Computer Animation, pp. 89–96 (July 2002)

    Google Scholar 

  13. Zordan, V.B., Majkowska, A., Chiu, B., Fast, M.: Dynamic response for motion capture animation. ACM Transactions on Graphics 24(3), 697 (2005)

    Article  Google Scholar 

  14. Shiratori, T., Coley, B., Cham, R., Hodgins, J.K.: Simulating balance recovery responses to trips based on biomechanical principles. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2009, pp. 37–46 (2009)

    Google Scholar 

  15. Tang, B., Pan, Z., Zheng, L., Zhang, M.: Interactive generation of falling motions. Computer Animation and Virtual Worlds 17(3-4), 271–279 (2006)

    Article  Google Scholar 

  16. McCann, J., Pollard, N.: Responsive characters from motion fragments. ACM Transactions on Graphics 26(3), 6:1–6:7 (2007)

    Google Scholar 

  17. Arikan, O., Forsyth, D.A., O’Brien, J.F.: Pushing people around. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 59–66 (July 2005)

    Google Scholar 

  18. Wu, C.-C., Medina, J., Zordan, V.B.: Simple steps for simply stepping. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 97–106. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Shih, C.L., Gruver, W.A., Lee, T.T.: Inverse Kinematics and Inverse Dynamics for Control of a Biped Walking Machine. Journal of Robotic Systems 10(4), 531–555 (1993)

    Article  MATH  Google Scholar 

  20. Stephens, B.: Humanoid push recovery. In: 2007 7th IEEE-RAS International Conference on Humanoid Robots, pp. 589–595 (November 2007)

    Google Scholar 

  21. Pratt, J., Carff, J., Drakunov, S., Goswami, A.: Capture point: A step toward humanoid push recovery. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 200–207 (2006)

    Google Scholar 

  22. Kenwright, B., Davison, R., Morgan, G.: Dynamic balancing and walking for real-time 3D characters. In: Allbeck, J.M., Faloutsos, P. (eds.) MIG 2011. LNCS, vol. 7060, pp. 63–73. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Sias, F.R., Zheng, Y.F.: How many degrees-of-freedom does a biped need? In: IEEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications, vol. 1, pp. 297–302 (1990)

    Google Scholar 

  24. Yin, C., Zhu, J., Xu, H.: Walking Gait Planning And Stability Control. Power Engineering

    Google Scholar 

  25. Kenwright, B.: Real-Time Character Inverse Kinematics using the Gauss-Seidel Iterative Approximation Method. In: International Conference on Creative Content Technologies, vol. (4), pp. 63–68 (2012)

    Google Scholar 

  26. Meredith, M., Maddock, S.: Real-time inverse kinematics: The return of the Jacobian. Tech. Rep. CS-04-06, Dept. of Computer Science, Univ. of Sheffield, pp. 1–15 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kenwright, B. (2013). Real-Time Reactive Biped Characters. In: Gavrilova, M.L., Tan, C.J.K., Kuijper, A. (eds) Transactions on Computational Science XVIII. Lecture Notes in Computer Science, vol 7848. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38803-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38803-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38802-6

  • Online ISBN: 978-3-642-38803-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics