Skip to main content

Bounded Least General Generalization

  • Conference paper
Inductive Logic Programming (ILP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7842))

Included in the following conference series:

  • 677 Accesses

Abstract

We study a generalization of Plotkin’s least general generalization. We introduce a novel concept called bounded least general generalization w.r.t. a set of clauses and show an instance of it for which polynomial-time reduction procedures exist. We demonstrate the practical utility of our approach in experiments on several relational learning datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Plotkin, G.: A note on inductive generalization. Edinburgh University Press (1970)

    Google Scholar 

  2. Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)

    Google Scholar 

  3. Muggleton, S., Feng, C.: Efficient induction of logic programs. In: ALT, pp. 368–381 (1990)

    Google Scholar 

  4. Horváth, T., Paass, G., Reichartz, F., Wrobel, S.: A logic-based approach to relation extraction from texts. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 34–48. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)

    Google Scholar 

  6. Maloberti, J., Sebag, M.: Fast theta-subsumption with constraint satisfaction algorithms. Machine Learning 55(2), 137–174 (2004)

    Article  MATH  Google Scholar 

  7. Atserias, A., Bulatov, A., Dalmau, V.: On the power of k-consistency. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 279–290. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier (2006)

    Google Scholar 

  9. Srinivasan, A., Muggleton, S.H.: Mutagenesis: ILP experiments in a non-determinate biological domain. In: ILP, pp. 217–232 (1994)

    Google Scholar 

  10. Helma, C., King, R.D., Kramer, S., Srinivasan, A.: The predictive toxicology challenge 2000-2001. Bioinformatics 17(1), 107–108 (2001)

    Article  Google Scholar 

  11. Cherkasov, A., Jankovic, B.: Application of ‘inductive’ qsar descriptors for quantification of antibacterial activity of cationic polypeptides. Molecules 9(12), 1034–1052 (2004)

    Article  Google Scholar 

  12. Žáková, M., Železný, F., Garcia-Sedano, J.A., Masia Tissot, C., Lavrač, N., Křemen, P., Molina, J.: Relational data mining applied to virtual engineering of product designs. In: Muggleton, S.H., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 439–453. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Landwehr, N., Kersting, K., De Raedt, L.: Integrating naïve bayes and FOIL. Journal of Machine Learning Research 8, 481–507 (2007)

    MATH  Google Scholar 

  14. Muggleton, S., Santos, J., Tamaddoni-Nezhad, A.: Progolem: A system based on relative minimal generalisation. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 131–148. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Liquiere, M.: Arc consistency projection: A new generalization relation for graphs. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 333–346. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Schietgat, L., Costa, F., Ramon, J., De Raedt, L.: Effective feature construction by maximum common subgraph sampling. Machine Learning 83(2), 137–161 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuželka, O., Szabóová, A., Železný, F. (2013). Bounded Least General Generalization. In: Riguzzi, F., Železný, F. (eds) Inductive Logic Programming. ILP 2012. Lecture Notes in Computer Science(), vol 7842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38812-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38812-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38811-8

  • Online ISBN: 978-3-642-38812-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics