Skip to main content

Days of Our Lives: Assessing Day Similarity from Location Traces

  • Conference paper
User Modeling, Adaptation, and Personalization (UMAP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7899))

Abstract

We develop and test algorithms for assessing the similarity of a person’s days based on location traces recorded from GPS. An accurate similarity measure could be used to find anomalous behavior, to cluster similar days, and to predict future travel. We gathered an average of 46 days of GPS traces from 30 volunteer subjects. Each subject was shown random pairs of days and asked to assess their similarity. We tested eight different similarity algorithms in an effort to accurately reproduce our subjects’ assessments, and our statistical tests found two algorithms that performed better than the rest. We also successfully applied one of our similarity algorithms to clustering days using location traces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Deng, K., et al.: Trajectory Indexing and Retrieval. In: Zheng, Y., Zhou, X. (eds.) Computing with Spatial Trajectories, Springer, New York (2011)

    Google Scholar 

  2. Ma, T.-S.: Real-Time Anomaly Detection for Traveling Individuals. In: Eleventh International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS 2009), Pittsburgh, PA USA, pp. 273–274 (2009)

    Google Scholar 

  3. Patterson, D.J., et al.: Opportunity Knocks: a System to Provide Cognitive Assistance with Transportation Services. In: Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 433–450. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Giroux, S., et al.: Pervasive Behavior Tracking for Cognitive Assistance. In: 1st International Conference on PErvasive Technologies Related to Assistive Environments (PETRA 2008). ACM (2008)

    Google Scholar 

  5. Xiang, T., Gong, S.: Video Behavior Profiling for Anomaly Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(5), 893–908 (2008)

    Article  Google Scholar 

  6. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, pp. 520–528. Springer, New York (2009)

    Book  MATH  Google Scholar 

  7. United States Bureau of Labor Statistics. American Time Use Survey (ATUS) http://www.bls.gov/tus/

  8. Yi, B.-K., Jagadish, H.V., Faloutsos, C.: Efficient Retrieval of Similar Time Sequences Under Time Warping. In: 14th International Conference on Data Engineering, Orlando, Florida USA, pp. 201–208 (1998)

    Google Scholar 

  9. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics Doklady 10(8), 707–710 (1966)

    MathSciNet  Google Scholar 

  10. Sinnott, R.W.: Virtues of the Haversine. Sky and Telescope 68(2), 159 (1984)

    MathSciNet  Google Scholar 

  11. Kullback, S.: Information Theory and Statistics. Dover, Mineola (1968)

    Google Scholar 

  12. Agrawal, R., Faloutsos, C., Swami, A.: Efficient Similarity Search in Sequence Databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  13. Holm, S.: A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics 6(2), 65–70 (1979)

    MathSciNet  MATH  Google Scholar 

  14. von Luxburg, U.: A Tutorial on Spectral Clustering. Statistics and Computing 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Biagioni, J., Krumm, J. (2013). Days of Our Lives: Assessing Day Similarity from Location Traces. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds) User Modeling, Adaptation, and Personalization. UMAP 2013. Lecture Notes in Computer Science, vol 7899. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38844-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38844-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38843-9

  • Online ISBN: 978-3-642-38844-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics