Skip to main content

Robust Hierarchical and Sparse Representation of Natural Sounds in High-Dimensional Space

  • Conference paper
Advances in Nonlinear Speech Processing (NOLISP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7911))

Included in the following conference series:

Abstract

Based on general findings from the field of neuroscience and their algorithmic implementations using signal processing, information theory and machine learning techniques, this paper highlights the advantages of modelling a signal in a sparse and high-dimensional feature space. The emphasis is put on the hierarchical organisation, very high dimensionality and sparseness aspects of auditory information, that allow unsupervised learning of meaningful auditory objects from simple linear projections. When the dictionaries are learned using independent component analysis (ICA), it is shown that specific spectro-temporal modulation patterns are learned to optimally represent speech, noise and tonal components. In a noisy isolated-word speech recognition task, sparse and high-dimensional features have shown greater robustness to noise compared to a standard system based on a dense low-dimensional feature space. This brings new ways of thinking in the field of recognition and classification of acoustic signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Molotchnikoff, S., Rouat, J.: Brain at work: Time, Sparseness and Superposition Principles. Frontiers in Bioscience (Landmark Edition) 17(1), 583–606 (2012)

    Article  Google Scholar 

  2. Winer, J., Schreiner, C.: The inferior colliculus. Springer (2005)

    Google Scholar 

  3. Hickok, G., Poeppel, D.: The cortical organization of speech processing. Nature Reviews Neuroscience 8(5), 393–402 (2007)

    Article  Google Scholar 

  4. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE Transactions on Audio, Speech, and Language Processing 20(1), 30–42 (2012)

    Article  Google Scholar 

  5. Tosic, I., Frossard, P.: Dictionnary Learning: What is the right representation for my signal? IEEE Signal Processing Magazine 28(2), 27–38 (2011)

    Article  Google Scholar 

  6. Klein, D.J., König, P., Körding, K.P.: Sparse Spectrotemporal Coding of Sounds. EURASIP Journal on Advances in Signal Processing 2003(7), 659–667 (2003)

    Article  MATH  Google Scholar 

  7. Heckmann, M., Domont, X., Joublin, F., Goerick, C.: A Hierarchical Framework for Spectro-Temporal Feature Extraction. Speech Communication 53, 736–752 (2011)

    Article  Google Scholar 

  8. Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: Proceedings of ICCV, pp. 555–562 (1998)

    Google Scholar 

  9. Lewicki, M.: Efficient coding of natural sounds. Nat. Neurosci. 5(4), 356–363 (2002)

    Article  Google Scholar 

  10. Lee, J., Lee, T., Jung, H., Lee, S.: On the efficient speech feature extraction based on independent component analysis. Neural Process. Lett. 15(3), 235–245 (2002)

    Article  MATH  Google Scholar 

  11. Hohmann, V.: Frequency analysis and synthesis using a Gammatone filterbank. Acta Acustica united with Acustica 88(3), 433–442 (2002)

    Google Scholar 

  12. Avendaño, C., Deng, L., Hermansky, H., Gold, B.: The analysis and representation of speech. Speech Processing in the Auditory System 18, 63–100 (2004)

    Article  Google Scholar 

  13. Greenberg, S., Kingsbury, B.: The modulation spectrogram: In pursuit of an invariant representation of speech. In: Proceedings of ICASSP, pp. 1647–1650 (1997)

    Google Scholar 

  14. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Networks 13(4-5), 411–430 (2000)

    Article  Google Scholar 

  15. Obradovic, D., Deco, G.: Blind signal separation revisited. In: Proceedings of the 36th IEEE Conference on Decision and Control, pp. 1591–1596 (1997)

    Google Scholar 

  16. Lee, J., Jung, H., Lee, T., Lee, S.: Speech enhancement with MAP estimation and ICA-based speech features. Electronics Letters 36(17), 1506–1507 (2000)

    Article  Google Scholar 

  17. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  18. Liberman, M., et al.: TI 46-Word Linguistic Data Consortium, Philadelphia (1993)

    Google Scholar 

  19. Young, S., Evermann, G., Kershaw, D., Moore, G., Odell, J., Ollason, D., Valtchev, V., Woodland, P.: The HTK Book Version 3.4. Cambridge University Press (2009)

    Google Scholar 

  20. Rabiner, L.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  21. Varga, A., Steeneken, H.: Assessment for automatic speech recognition: II. NOISEX-92: A database and an experiment to study the effect of additive noise on speech recognition systems. Speech Communication 12(3), 247–251 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brodeur, S., Rouat, J. (2013). Robust Hierarchical and Sparse Representation of Natural Sounds in High-Dimensional Space. In: Drugman, T., Dutoit, T. (eds) Advances in Nonlinear Speech Processing. NOLISP 2013. Lecture Notes in Computer Science(), vol 7911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38847-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38847-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38846-0

  • Online ISBN: 978-3-642-38847-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics