Abstract
Researchers have explored many formalisms to model how people think about their world. We describe an application that requires modeling how people forecast events in the real world. The naïve assumption is that they use formalisms that model how the world actually evolves. These formalisms are at variance with empirical psychological results. We present a more realistic alternative, the Narrative Space Model (NSM), describe a swarming agent algorithm to fit its parameters from observed data, and present some early results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking. IEEE Transactions on Signal Processing 50, 174–188 (2001)
Busemeyer, J.R., Townsend, J.T.: Decision Field Theory: A Dynamic-Cognitive Approach to Decision Making in an Uncertain Environment. Psychological Review 100(3), 432–459 (1993)
Diaconis, P., Rolles, S.W.W.: Bayesian analysis for reversible Markov chains. Ann. Statist. 34(3), 1270–1292 (2006)
Dieckmann, N.F.: Communicating Risk in Intelligence Forecasts: The Consumer’s Perspective. Thesis at University of Oregon, Department of Dept. of Psychology (2007)
Filatova, T., Parker, D., van der Veen, A.: Agent-Based Urban Land Markets: Agent’s Pricing Behavior, Land Prices and Urban Land Use Change. Journal of Artificial Societies and Social Simulation 12(1), 3 (2009)
Fisher, W.R.: Human Communication as Narration: Toward a Philosophy of Reason, Value, and Action. University of South Carolina Press, Columbia (1989)
Gigerenzer, G.: Bounded and Rational. In: Stainton, R.J. (ed.) Contemporary Debates in Cognitive Science, Contemporary Debates in Philosophy, vol. 7, pp. 115–133. Blackwell, Oxford (2006)
Heuer Jr., R.J.: Psychology of Intelligence Analysis. Center for the study of intelligence, Central Intelligence Agency (1999)
Jeffrey, R.: Subjective Probability: The Real Thing. Cambridge University Press, Cambridge (2004)
Kahneman, D., Slovic, P., Tversky, A. (eds.): Judgment under uncertainty: Heuristics and Biases. Cambridge Univ. Press, Cambridge (1982)
Kahneman, D., Tversky, A.: The Simulation Heuristic. In: Kahneman, D., Slovic, P., Tversky, A. (eds.) Judgment Under Uncertainty: Heuristics and Biases, pp. 201–208. Cambridge University Press, Cambridge (1982)
Millington, J., Romero-Calcerrada, R., Wainwright, J., Perry, G.: An Agent-Based Model of Mediterranean Agricultural Land-Use/Cover Change for Examining Wildfire Risk. Journal of Artificial Societies and Social Simulation 11(4) (2008)
Page, S.E.: The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies. Princeton University Press, Princeton (2007)
Van Dyke Parunak, H., Brueckner, S.: Concurrent Modeling of Alternative Worlds with Polyagents. In: Antunes, L., Takadama, K. (eds.) MABS 2006. LNCS (LNAI), vol. 4442, pp. 128–141. Springer, Heidelberg (2007)
Van Dyke Parunak, H., Brueckner, S., Savit, R.: Universality in Multi-Agent Systems. In: Proceedings of Third International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2004), pp. 930–937. ACM (2004)
Power, C.: A Spatial Agent-Based Model of N-Person Prisoner’s Dilemma Cooperation in a Socio-Geographic Community. Journal of Artificial Societies and Social Simulation 12(1), 8 (2009)
Simon, H.A.: The Sciences of the Artificial. MIT Press, Cambridge (1969)
Sterman, J.: Business Dynamics. McGraw-Hill, New York (2000)
Sterman, J.D.: Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment. Management Science 35(3), 321–339 (1989)
Surowiecki, J.: The Wisdom of Crowds: Why the Many are Smarter Than the Few and How Collective Wisdom Shapes Business, Economies, Societies and Nations. Doubleday, New York (2004)
Tversky, A., Kahneman, D.: Causal schemas in judgments under uncertainty. In: Kahneman, D., Slovic, P., Tversky, A. (eds.) Judgment under Uncertainty: Heuristics and Biases, pp. 117–128. Cambridge University Press, Cambridge (1982)
van Rijsbergen, C.J.: The Geometry of Information Retrieval. Cambridge University Press, Cambridge (2004)
Williamson, J.: Combining probability and logic: introduction. Journal of Logic, Language and Information 15(1-2), 1–3 (2006)
Wood, M.J., Douglas, K.M., Sutton, R.M.: Dead and Alive: Beliefs in Contradictory Conspiracy Theories. Social Psychological and Personality Science (2012) (forthcoming)
Yang, C., Kurahashi, S., Kurahashi, K., Ono, I., Terano, T.: Agent-Based Simulation on Women’s Role in a Family Line on Civil Service Examination in Chinese History. Journal of Artificial Societies and Social Simulation 12(2), 5 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Van Dyke Parunak, H., Brueckner, S., Downs, E.A., Sappelsa, L. (2013). Swarming Estimation of Realistic Mental Models. In: Giardini, F., Amblard, F. (eds) Multi-Agent-Based Simulation XIII. MABS 2012. Lecture Notes in Computer Science(), vol 7838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38859-0_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-38859-0_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38858-3
Online ISBN: 978-3-642-38859-0
eBook Packages: Computer ScienceComputer Science (R0)