Skip to main content

Agent-Based Modelling of Stock Markets Using Existing Order Book Data

  • Conference paper
Multi-Agent-Based Simulation XIII (MABS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7838))

  • 795 Accesses

Abstract

We propose a new method for creating alternative scenarios for the evolution of a financial time series over short time periods. Using real order book data from the Chi-X exchange, along with a number of agents to interact with that data, we create a semi-synthetic time series of stock prices. We investigate the impact of using both simple, limited intelligence traders, along with a more realistic set of traders. We also test two different hypotheses about how real participants in the market would modify their orders in the alternative scenario created by the model. We run our experiments on 3 different stocks, evaluating a number of financial metrics for intra- and inter-day variability. Our results using realistic traders and relative pricing of real orders were found to outperform other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arthur, W.B., Holland, J.H., LeBaron, B.D., Palmer, R.G., Tayler, P.: Asset Pricing Under Endogenous Expectations in an Artificial Stock Market. SSRN eLibrary (1996)

    Google Scholar 

  2. Chakraborti, A., Muni Toke, I., Patriarca, M., Abergel, F.: Econophysics: Empirical facts and agent-based models. ArXiv e-prints (September 2009)

    Google Scholar 

  3. Chen, S.H., Chang, C.I., Du, Y.R.: Agent-based economic models and econometrics. The Knowledge Engineering Review, 1–46 (2009)

    Google Scholar 

  4. Chen, S.H., Yeh, C.H.: Evolving traders and the business school with genetic programming: A new architecture of the agent-based artificial stock market. Journal of Economic Dynamics and Control 25(3-4), 363–393 (2001)

    Article  MATH  Google Scholar 

  5. Chiarella, C., Iori, G.: A simulation analysis of the microstructure of double auction markets. Quantitative Finance 2(5), 346–353 (2002)

    Article  Google Scholar 

  6. Cohen, K.J., Maier, S.F., Schwartz, R.A., Whitcomb, D.K.: A simulation model of stock exchange trading. Simulation 41(5), 181–191 (1983)

    Article  Google Scholar 

  7. Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance 1(2), 223–236 (2001)

    Article  Google Scholar 

  8. Cristelli, M., Pietronero, L., Zaccaria, A.: Critical Overview of Agent-Based Models for Economics. ArXiv e-prints (January 2011)

    Google Scholar 

  9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6, 182–197 (2000)

    Article  Google Scholar 

  10. Engle, R.F.: A general approach to lagrange multiplier model diagnostics. Journal of Econometrics 20(1), 83–104 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim, G., Markowitz, H.: Investment Rules, Margin, and Market Volatility. Journal of Portfolio Management 16(1), 45–52 (1989)

    Article  Google Scholar 

  12. Kirilenko, A.A., Kyle, A.P., Samadi, M., Tuzun, T.: The Flash Crash: The Impact of High Frequency Trading on an Electronic Market. Social Science Research Network Working Paper Series (October 2010), http://ssrn.com/abstract=1686004

  13. LeBaron, B.: Agent-based computational finance: Suggested readings and early research. Journal of Economic Dynamics and Control 24(5-7), 679–702 (2000)

    Article  MATH  Google Scholar 

  14. LeBaron, B., Arthur, W., Palmer, R.: Time series properties of an artificial stock market. Journal of Economic Dynamics and Control 23(9-10), 1487–1516 (1999)

    Article  MATH  Google Scholar 

  15. Licalzi, M., Pellizzari, P.: Fundamentalists clashing over the book: a study of order-driven stock markets. Quantitative Finance 3(6), 470–480 (2003)

    Article  MathSciNet  Google Scholar 

  16. Lux, T., Schornstein, S.: Genetic learning as an explanation of stylized facts of foreign exchange markets. Journal of Mathematical Economics 41(1-2), 169–196 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mandelbrot, B.: The Variation of Certain Speculative Prices. The Journal of Business 36(4), 394–419 (1963)

    Article  Google Scholar 

  18. Maslov, S.: Simple model of a limit order-driven market. Physica A: Statistical Mechanics and its Applications 278(3-4), 571–578 (2000)

    Article  Google Scholar 

  19. Palmer, R., Arthur, W.B., Holland, J.H., LeBaron, B., Tayler, P.: Artificial economic life: a simple model of a stockmarket. Physica D: Nonlinear Phenomena 75(1-3), 264–274 (1994)

    Article  MATH  Google Scholar 

  20. da Costa Pereira, C., Mauri, A., Tettamanzi, A.G.B.: Cognitive-agent-based modeling of a financial market. In: Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2009, vol. 2, pp. 20–27. IEEE Computer Society, Washington, DC (2009)

    Chapter  Google Scholar 

  21. Russell, J.R., Engle, R.F.: Analysis of high-frequency data. In: Aït-Sahalia, Y., Hansen, L.P. (eds.) Handbook of Financial Econometrics, pp. 383–426. North-Holland, San Diego (2010)

    Chapter  Google Scholar 

  22. Westerhoff, F., Reitz, S.: Nonlinearities and cyclical behavior: The role of chartists and fundamentalists. Studies in Nonlinear Dynamics & Econometrics 7(4), 3 (2003)

    Article  Google Scholar 

  23. Zigrand, J.P., Shin, H.S., Beunza, D.: Feedback effects and changes in the diversity of trading strategies. The future of Computer Trading in Financial Markets (2011), http://www.bis.gov.uk/assets/bispartners/foresight/docs/computer-trading/11-1221-dr2-feedback-effects-and-changes-in-diversity-of-trading-strategies.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Panayi, E., Harman, M., Wetherilt, A. (2013). Agent-Based Modelling of Stock Markets Using Existing Order Book Data. In: Giardini, F., Amblard, F. (eds) Multi-Agent-Based Simulation XIII. MABS 2012. Lecture Notes in Computer Science(), vol 7838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38859-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38859-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38858-3

  • Online ISBN: 978-3-642-38859-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics