Skip to main content

Matched Signal Detection on Graphs: Theory and Application to Brain Network Classification

  • Conference paper
Information Processing in Medical Imaging (IPMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7917))

Included in the following conference series:

Abstract

We develop a matched signal detection (MSD) theory for signals with an intrinsic structure described by a weighted graph. Hypothesis tests are formulated under different signal models. In the simplest scenario, we assume that the signal is deterministic with noise in a subspace spanned by a subset of eigenvectors of the graph Laplacian. The conventional matched subspace detection can be easily extended to this case. Furthermore, we study signals with certain level of smoothness. The test turns out to be a weighted energy detector, when the noise variance is negligible. More generally, we presume that the signal follows a prior distribution, which could be learnt from training data. The test statistic is then the difference of signal variations on associated graph structures, if an Ising model is adopted. Effectiveness of the MSD on graph is evaluated both by simulation and real data. We apply it to the network classification problem of Alzheimer’s disease (AD) particularly. The preliminary results demonstrate that our approach is able to exploit the sub-manifold structure of the data, and therefore achieve a better performance than the traditional principle component analysis (PCA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scharf, L.L., Friedlander, B.: Matched Subspace Detectors. IEEE Trans. on Signal Proc. 42, 2146–2157 (1994)

    Article  Google Scholar 

  2. Li, Z., Li, Q., Yu, X., Conti, P.S., Leahy, R.M.: Lesion Detection in Dynamic FDG-PEG Using Matched Subspace Detection. IEEE Trans. on Medical Imaging 28, 230–240 (2009)

    Article  Google Scholar 

  3. Belkin, M., Niyogi, P.: Using Manifold Structure for Partially Labeled Classification. In: Advances in Neural Information Processing Systems, vol. 15, pp. 929–936 (2002)

    Google Scholar 

  4. Saul, L.K., Weinberger, K.Q., Ham, J.H., Sha, F., Lee, D.D.: Spectral Methods for Dimensionality Reduction. In: Chapelle, O., Schoelkopf, B., Zien, A. (eds.) Semisupervised Learning, pp. 293–308. MIT Press, Cambridge (2006)

    Google Scholar 

  5. Cai, D., He, X., Han, J.: Spectral regression: A Unified Approach for Sparse Subspace Learning. In: 7th IEEE Int. Conf. on Data Mining, pp. 73–82 (2007)

    Google Scholar 

  6. Addario-Berry, L., Broutin, N., Devroye, L., Lugosi, G.: On Combinatorial Testing Problems. The Annals of Statistics 38, 3063–3092 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arias-Castro, E., Candes, E.J., Durand, A.: Detection of an Anomalous Cluster in a Network. The Annals of Statistics 39, 278–304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H.M.: Forecasting the Global Burden of Alzheimers Disease. Alzheimer’s and Dementia 3, 186–191 (2007)

    Article  Google Scholar 

  9. Mintun, M.A., Larossa, G.N., Sheline, Y.I., Dence, C.S., Lee, S.Y., Mach, R.H., Klunk, W.E., Mathis, C.A., DeKosky, S.T., Morris, J.C.: [11C] PIB in a Nondemented Population Potential Antecedent Marker of Alzheimer Disease. Neurology 67, 446–452 (2006)

    Article  Google Scholar 

  10. Zhu, X., Rabbat, M.: Approximating Signals Supported on Graphs. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp. 3921–3924 (2012)

    Google Scholar 

  11. Shuman, D.I., Ricaud, B., Vandergheynst, P.: A Windowed Graph Fourier Transform. In: IEEE Statistical Signal Processing Workshop (SSP), pp. 133–136 (2012)

    Google Scholar 

  12. Bougleux, S., Elmoataz, A., Melkemi, M.: Discrete Regularization on Weighted Graphs for Image and Mesh Filtering. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 128–139. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Spielman, D.A.: Spectral Graph Theory and Its Applications. In: 48th Annual IEEE Symposium on Foundations of Computer Science, pp. 29–38 (2007)

    Google Scholar 

  14. Tipping, E.M., Bishop, C.M.: Probabilistic Principal Component Analysis. Jour. of the Royal Stat. Soci.: Series B (Stat. Meth.) 61, 611–622 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sharpnack, J., Singh, A.: Identifying Graph-Structured Activation Patterns in Networks. In: Proc. of Neural. Info. Proc. Sys. (2010)

    Google Scholar 

  16. Grimmett, G.: Probability on Graphs: Random Processes on Graphs and Lattices, vol. 1. Cambridge University Press (2010)

    Google Scholar 

  17. Paredes, J.L., Wang, Z., Arce, G.R., Sadler, B.M.: Compressive Matched Subspace Detection. In: Proc. 17th European Signal Processing Conf., pp. 120–124 (2009)

    Google Scholar 

  18. Bassett, D.S., Bullmore, E.: Small-World Brain Networks. The Neuroscientist 12, 512–523 (2006)

    Article  Google Scholar 

  19. Watts, D.J., Strogatz, S.H.: Collective Dynamics of “Small-World” Networks. Nature 2, 393–440 (1998)

    Google Scholar 

  20. Buckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden, T., Andrews-Hanna, J.R., Sperling, R.A., Johnson, K.A.: Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer’s Disease. The Journal of Neuroscience 29, 1860–1873 (2009)

    Article  Google Scholar 

  21. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. Neuroimage 15, 273–289 (2002)

    Article  Google Scholar 

  22. Huang, S., Li, J., Sun, L., Liu, J., Wu, T., Chen, K., Fleisher, A., Reiman, E., Ye, J.: Learning Brain Connectivity of Alzheimer’s Disease from Neuroimaging Data. In: Advances in Neural Information Processing Systems, vol. 22, pp. 808–816 (2009)

    Google Scholar 

  23. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press (2000)

    Google Scholar 

  24. Hu, C., Cheng, L., Sepulcre, J., Fakhri, G.E., Lu, Y.M., Li, Q.: A Graph Theoretical Regression Model for Brain Connectivity Learning of Alzheimer’s Disease. In: Int. Symp. on Biomedical Imaging (2013, to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, C., Cheng, L., Sepulcre, J., El Fakhri, G., Lu, Y.M., Li, Q. (2013). Matched Signal Detection on Graphs: Theory and Application to Brain Network Classification. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics