Abstract
The estimation of intra-subject functional connectivity is greatly complicated by the small sample size and complex noise structure in functional magnetic resonance imaging (fMRI) data. Pooling samples across subjects improves the conditioning of the estimation, but loses subject-specific connectivity information. In this paper, we propose a new sparse group Gaussian graphical model (SGGGM) that facilitates joint estimation of intra-subject and group-level connectivity. This is achieved by casting functional connectivity estimation as a regularized consensus optimization problem, in which information across subjects is aggregated in learning group-level connectivity and group information is propagated back in estimating intra-subject connectivity. On synthetic data, we show that incorporating group information using SGGGM significantly enhances intra-subject connectivity estimation over existing techniques. More accurate group-level connectivity is also obtained. On real data from a cohort of 60 subjects, we show that integrating intra-subject connectivity estimated with SGGGM significantly improves brain activation detection over connectivity priors derived from other graphical modeling approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Huang, S., Li, J., Sun, L., Ye, J., Fleisher, A., Wu, T., Chen, K., Reiman, E.: Learning Brain Connectivity of Alzheimer’s Disease by Sparse Inverse Covariance Estimation. Neuroimage 50, 935–949 (2010)
Delbeuck, X., Van der Linden, M., Collette, F.: Alzheimer’s Disease as a Disconnection Syndrome? Neuropsychol. Rev. 13, 79–92 (2003)
Fox, M.D., Raichle, M.E.: Spontaneous Fluctuations in Brain Activity Observed with Functional Magnetic Resonance Imaging. Nat. Rev. Neurosci. 8, 700–711 (2007)
Smith, S.M., Fox, P.T., Miller, K.L., Glahn, D.C., Fox, P.M., Mackay, C.E., Filippini, N., Watkins, K.E., Toro, R., Laird, A.R., Beckmann, C.F.: Correspondence of the Brain’s Functional Architecture During Activation and Rest. Proc. Natl. Acad. Sci. 106, 13040–13045 (2009)
Varoquaux, G., Gramfort, A., Poline, J.B., Thirion, B.: Brain Covariance Selection: Better Individual Functional Connectivity Models Using Population Prior. In: Advances in Neural Information Processing Systems, vol. 23, pp. 2334–2342 (2010)
Smith, S.: The Future of fMRI Connectivity. NeuroImage 62, 1257–1266 (2012)
Chen, Y., Wiesel, A., Eldar, Y.C., Hero, A.O.: Shrinkage Algorithms for MMSE Covariance Estimation. IEEE Trans. Sig. Proc. 58, 5016–5029 (2010)
Ng, B., Varoquaux, G., Poline, J.-B., Thirion, B.: A Novel Sparse Graphical Approach for Multimodal Brain Connectivity Inference. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 707–714. Springer, Heidelberg (2012)
Venkataraman, A., Rathi, Y., Kubicki, M., Westin, C.F., Golland, P.: Joint Modeling of Anatomical and Functional Connectivity for Population Studies. IEEE Trans. Med. Imaging 31, 164–182 (2012)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Found. Trend Mach. Learn. 3, 1–122 (2010)
Hsieh, C.J., Sustik, M.A., Dhillon, I.S., Ravikumar, P.: Sparse Invers Covariance Matrix Estimation Using Quadratic Approximation. In: Advances in Neural Information Processing Systems, vol. 24, pp. 2330–2338 (2011)
Ng, B., Abugharbieh, R., Varoquaux, G., Poline, J.B., Thirion, B.: Connectivity-Informed fMRI Activation Detection. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 285–292. Springer, Heidelberg (2011)
Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.B., Frith, C.D., Frackowiak, R.S.J.: Statistical Parametric Maps in Functional Imaging: A General Linear Approach. Hum. Brain Mapp. 2, 189–210 (1995)
Pinel, P., Thirion, B., Meriaux, S., Jober, A., Serres, J., Le Bihan, D., Poline, J.B., Dehaene, S.: Fast Reproducible Identification and Large-scale Databasing of Individual Functional Cognitive Networks. BioMed. Central Neurosci. 8, 91 (2007)
Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Keribin, C., Thirion, B.: A Supervised Clustering Approach for fMRI-based Inference of Brain States. Patt. Recog. 45, 2041–2049 (2012)
Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and Simple Calculus on Tensors in the Log-Euclidean Framework. In: Duncan, J., Gerig, G. (eds.) MICCAI 2005, Part I. LNCS, vol. 3749, pp. 115–122. Springer, Heidelberg (2005)
Nichols, T., Hayasaka, S.: Controlling the Familywise Error Rate in Functional Neuroimaging: a Comparative Review. Stat. Methods Med. Research 12, 419–446 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ng, B., Varoquaux, G., Poline, J.B., Thirion, B. (2013). A Novel Sparse Group Gaussian Graphical Model for Functional Connectivity Estimation. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-38868-2_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38867-5
Online ISBN: 978-3-642-38868-2
eBook Packages: Computer ScienceComputer Science (R0)