Abstract
Deformable medical image registration requires the optimisation of a function with a large number of degrees of freedom. Commonly-used approaches to reduce the computational complexity, such as uniform B-splines and Gaussian image pyramids, introduce translation-invariant homogeneous smoothing, and may lead to less accurate registration in particular for motion fields with discontinuities. This paper introduces the concept of sparse image representation based on supervoxels, which are edge-preserving and therefore enable accurate modelling of sliding organ motions frequently seen in respiratory and cardiac scans. Previous shortcomings of using supervoxels in motion estimation, in particular inconsistent clustering in ambiguous regions, are overcome by employing multiple layers of supervoxels. Furthermore, we propose a new similarity criterion based on a binary shape representation of supervoxels, which improves the accuracy of single-modal registration and enables multi-modal registration. We validate our findings based on the registration of two challenging clinical applications of volumetric deformable registration: motion estimation between inhale and exhale phase of CT scans for radiotherapy planning, and deformable multi-modal registration of diagnostic MRI and CT chest scans. The experiments demonstrate state-of-the-art registration accuracy, and require no additional anatomical knowledge with greatly reduced computational complexity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Castillo, E., Castillo, R., Martinez, J., Shenoy, M., Guerrero, T.: Four-dimensional deformable image registration using trajectory modeling. Phys. Med. Biol. 55(1), 305 (2009)
Felzenszwalb, P., Huttenlocher, D.: Efficient Belief Propagation for Early Vision. Int. J. Comp. Vis. 70(1), 41–54 (2006)
Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registrations through MRFs and efficient linear programming. Med. Imag. Anal. 12(6), 731–741 (2008)
Heinrich, M.P., Jenkinson, M., Bhushan, M., Matin, T., Gleeson, F.V., Brady, M., Schnabel, J.A.: MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration. Med. Imag. Anal. 16(7), 1423–1435 (2012)
Heinrich, M., Jenkinson, M., Brady, M., Schnabel, J.: MRF-based deformable registration and ventilation estimation of lung CT. IEEE Trans. Med. Imag. (2013)
Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts - a review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1274–1279 (2007)
Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. ACM Trans. Graph. 26(3), 96 (2007)
Lei, C., Selzer, J., Yang, Y.H.: Region-tree based stereo using dynamic programming optimization. In: CVPR, pp. 2378–2385. IEEE (2006)
Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmentation of mitochondria in EM image stacks with learned shape features. IEEE Trans. Med. Imag. 31(2), 474–486 (2012)
Schmidt-Richberg, A., Werner, R., Handels, H., Ehrhardt, J.: Estimation of slipping organ motion by registration with direction-dependent regularization. Med. Imag. Anal. 16(1), 150–159 (2012)
Shi, W., Zhuang, X., Pizarro, L., Bai, W., Wang, H., Tung, K.P., Edwards, P., Rueckert, D.: Registration using sparse free-form deformations. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 659–666. Springer, Heidelberg (2012)
Unser, M.A., Aldroubi, A., Gerfen, C.R.: Multiresolution image registration procedure using spline pyramids. In: Int. Symp. on Optics, Imaging, and Instrumentation, SPIE, pp. 160–170 (1993)
Vandemeulebroucke, J., Bernard, O., Rit, S., Kybic, J., Clarysse, P., Sarrut, D.: Automated segmentation of a motion mask to preserve sliding motion in deformable registration of thoracic CT. Med. Phys. 39, 1006 (2012)
Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: ACM-SIAM Symp. on Discrete Algorithms, pp. 311–321 (1993)
Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 151–158. Springer, Heidelberg (1994)
Zitnick, C.W., Jojic, N., Kang, S.B.: Consistent segmentation for optical flow estimation. In: ICCV, pp. 1308–1315. IEEE (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Heinrich, M.P., Jenkinson, M., Papież, B.W., Glesson, F.V., Brady, S.M., Schnabel, J.A. (2013). Edge- and Detail-Preserving Sparse Image Representations for Deformable Registration of Chest MRI and CT Volumes. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_39
Download citation
DOI: https://doi.org/10.1007/978-3-642-38868-2_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38867-5
Online ISBN: 978-3-642-38868-2
eBook Packages: Computer ScienceComputer Science (R0)