Skip to main content

Bayesian Estimation of Regularization and Atlas Building in Diffeomorphic Image Registration

  • Conference paper
Information Processing in Medical Imaging (IPMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7917))

Included in the following conference series:

Abstract

This paper presents a generative Bayesian model for diffeomorphic image registration and atlas building. We develop an atlas estimation procedure that simultaneously estimates the parameters controlling the smoothness of the diffeomorphic transformations. To achieve this, we introduce a Monte Carlo Expectation Maximization algorithm, where the expectation step is approximated via Hamiltonian Monte Carlo sampling on the manifold of diffeomorphisms. An added benefit of this stochastic approach is that it can successfully solve difficult registration problems involving large deformations, where direct geodesic optimization fails. Using synthetic data generated from the forward model with known parameters, we demonstrate the ability of our model to successfully recover the atlas and regularization parameters. We also demonstrate the effectiveness of the proposed method in the atlas estimation problem for 3D brain images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allassonnière, S., Amit, Y., Trouvé, A.: Toward a coherent statistical framework for dense deformable template estimation. Journal of the Royal Statistical Society, Series B 69, 3–29 (2007)

    Google Scholar 

  2. Allassonnière, S., Kuhn, E.: Stochastic algorithm for parameter estimation for dense deformable template mixture model. In: ESAIM-PS, vol. 14, pp. 382–408 (2010)

    Google Scholar 

  3. Arnol’d, V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 319–361 (1966)

    Article  MATH  Google Scholar 

  4. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision 61(2), 139–157 (2005)

    Article  Google Scholar 

  5. Bhatia, K., Hajnal, J., Puri, B., Edwards, A., Rueckert, D.: Consistent groupwise non-rigid registration for atlas construction. In: ISBI (2004)

    Google Scholar 

  6. Budhiraja, A., Dupuis, P., Maroulas, V.: Large deviations for stochastic flows of diffeomorphisms. Bernoulli 16, 234–257 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duane, S., Kennedy, A., Pendleton, B., Roweth, D.: Hybrid Monte Carlo. Physics Letters B, 216–222 (1987)

    Google Scholar 

  8. Iglesias, J.E., Sabuncu, M.R., Van Leemput, K., The Alzheimer’s Disease Neuroimaging Initiative: Incorporating parameter uncertainty in Bayesian segmentation models: Application to hippocampal subfield volumetry. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 50–57. Springer, Heidelberg (2012)

    Google Scholar 

  9. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23(suppl. 1), 151–160 (2004)

    Article  Google Scholar 

  10. Van Leemput, K.: Encoding probabilistic brain atlases using Bayesian inference. IEEE Transactions on Medical Imaging 28, 822–837 (2009)

    Article  Google Scholar 

  11. Ma, J., Miller, M.I., Trouvé, A., Younes, L.: Bayesian template estimation in computational anatomy. NeuroImage 42, 252–261 (2008)

    Article  Google Scholar 

  12. Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. Journal of Mathematical Imaging and Vision 24(2), 209–228 (2006)

    Article  MathSciNet  Google Scholar 

  13. Risholm, P., Pieper, S., Samset, E., Wells III, W.M.: Summarizing and visualizing uncertainty in non-rigid registration. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 554–561. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Risholm, P., Samset, E., Wells III, W.: Bayesian estimation of deformation and elastic parameters in non-rigid registration. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds.) WBIR 2010. LNCS, vol. 6204, pp. 104–115. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Simpson, I.J.A., Schnabel, J.A., Groves, A.R., Andersson, J.L.R., Woolrich, M.W.: Probabilistic inference of regularisation in non-rigid registration. NeuroImage 59, 2438–2451 (2012)

    Article  Google Scholar 

  16. Singh, N., Hinkle, J., Joshi, S., Thomas Fletcher, P.: A vector momenta formulation of diffeomorphisms for improved geodesic regression and atlas construction. In: International Symposium on Biomedial Imaging (ISBI) (April 2013)

    Google Scholar 

  17. Twining, C.J., Cootes, T., Marsland, S., Petrovic, V., Schestowitz, R., Taylor, C.J.: A unified information-theoretic approach to groupwise non-rigid registration and model building. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 1–14. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Vialard, F.-X., Risser, L., Holm, D., Rueckert, D.: Diffeomorphic atlas estimation using Kärcher mean and geodesic shooting on volumetric images. In: MIUA (2011)

    Google Scholar 

  19. Vialard, F.-X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3d image registration via geodesic shooting using an efficient adjoint calculation. International Journal of Computer Vision, 229–241 (2012)

    Google Scholar 

  20. Younes, L., Arrate, F., Miller, M.I.: Evolutions equations in computational anatomy. NeuroImage 45(1S1), 40–50 (2009)

    Article  Google Scholar 

  21. Zöllei, L., Jenkinson, M., Timoner, S., Wells, W.M.: A marginalized MAP approach and EM optimization for pair-wise registration. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 662–674. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, M., Singh, N., Fletcher, P.T. (2013). Bayesian Estimation of Regularization and Atlas Building in Diffeomorphic Image Registration. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics