Abstract
Multi-atlas segmentation has been widely applied in medical image analysis. This technique relies on image registration to transfer segmentation labels from pre-labeled atlases to a novel target image and applies label fusion to reduce errors produced by registration-based label transfer. To improve the performance of registration-based label transfer against registration errors, our first contribution is to propose a label transfer scheme that generates multiple warped versions of each atlas to one target image through registration paths obtained by composing inter-atlas registrations and atlas-target registrations. The problem of decreasing quality of warped atlases caused by accumulative errors in composing multiple registrations is properly addressed by an atlas selection method that is guided by atlas segmentations. To improve the performance of label fusion against registration errors, our second contribution is to integrate the probabilistic correspondence model employed by the non-local mean approach with the joint label fusion technique, both of which have shown excellent performance for label fusion. Experiments on mitral-valve segmentation in 3D transesophageal echocardiography (TEE) show the effectiveness of the proposed techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Artaechevarria, X., Munoz-Barrutia, A., de Solorzano, C.O.: Combination strategies in multi-atlas image segmentation: Application to brain MR data. IEEE TMI 28(8), 1266–1277 (2009)
Asman, A.J., Landman, B.A.: Non-local STAPLE: An intensity-driven multi-atlas rater model. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 426–434. Springer, Heidelberg (2012)
Avants, B., Epstein, C., Grossman, M., Gee, J.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12(1), 26–41 (2008)
Cardoso, M.J., Wolz, R., Modat, M., Fox, N.C., Rueckert, D., Ourselin, S.: Geodesic information flows. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 262–270. Springer, Heidelberg (2012)
Coupe, P., Manjon, J., Fonov, V., Pruessner, J., Robles, N., Collins, D.: Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)
Dice, L.: Measure of the amount of ecological association between species. Ecology 26, 297–302 (1945)
Gass, T., Székely, G., Goksel, O.: Semi-supervised segmentation using multiple segmentation hypotheses from a single atlas. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 29–37. Springer, Heidelberg (2013)
Hamm, J., Ye, D., Verma, R., Davatzikos, C.: Gram: A framework for geodesic registration on anatomical manifolds. MedIA 14(5), 633–642 (2010)
Ionasec, R., Voigt, I., Georgescu, B., Wang, Y., Houle, H., Vega-Higuera, F., Navab, N., Comaniciu, D.: Patient-specific modeling and quantification of the aortic and mitral valves from 4-d cardiac ct and tee. IEEE Transactions on Medical Imaging 29(9), 1636–1651 (2010)
Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M., van Ginneken, B.: Multi-atlas-based segmentation with local decision fusion–application to cardiac and aortic segmentation in CT scans. IEEE Trans. on MI 28(7), 1000–1010 (2009)
Grewal, J., Mankad, S., Freeman, W., Click, R., Suri, R., Abel, M., Oh, J., Pellikka, P., Nesbitt, G., Syed, I., Mulvagh, S., Miller, F.: Real-time three-dimensional transesophageal echocardiography in the intraoperative assessment of mitral valve disease. J. Am. Soc. Echocardiogr. 22(1), 34–41 (2009)
Jia, H., Yap, P., Shen, D.: Iterative multi-atlas-based multi-image segmentation with tree-based registration. Neuroimage 59(1), 422–430 (2012)
Sabuncu, M., Yeo, B., Leemput, K.V., Fischl, B., Golland, P.: A generative model for image segmentation based on label fusion. IEEE TMI 29(10), 1714–1720 (2010)
Smith, S., Jenkinson, M., Woolrich, M., Beckmann, C., Behrens, T., JohansenBerg, H., Bannister, P., Luca, M., Drobnjak, I., Flitney, D., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., Stefano, N., Brady, J., Matthews, P.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(suppl. 1), 208–219 (2004)
Sugeng, L., Shernan, S., Salgo, I.S., Weinert, L., Shook, D., Raman, J., Jeevanandam, V., Dupont, F., Settlemier, S., Savord, B., Fox, J., Mor-Avi, V., Lang, R.: Live 3-dimensional transesophageal echocardiography initial experience using the fully-sampled matrix array probe. J. Am. Coll. Cardiol. 52(6), 446–449 (2008)
Vergnat, M., Jassar, A., Jackson, B., Ryan, L., Eperjesi, T., Pouch, A., Weiss, S., Cheung, A., Acker, M., Gorman, J., Gorman, R.: Ischemic mitral regurgitation: a quantitative three-dimensional echocardiographic analysis. Ann. Thorac. Surg. 91(1), 157–164 (2011)
Wang, H., Suh, J.W., Das, S., Pluta, J., Craige, C., Yushkevich, P.: Multi-atlas segmentation with joint label fusion. IEEE Trans. on PAMI 35(3), 611–623 (2013)
Wolz, R., Aljabar, P., Hajnal, J., Hammers, A., Rueckert, D.: Leap: Learning embeddings for atlas propagation. NeuroImage 49(2), 1316–1325 (2010)
Yushkevich, P., Piven, J., Hazlett, H., Smith, R., Ho, S., Gee, J., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3), 1116–1128 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, H. et al. (2013). Multi-atlas Segmentation with Robust Label Transfer and Label Fusion. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-38868-2_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38867-5
Online ISBN: 978-3-642-38868-2
eBook Packages: Computer ScienceComputer Science (R0)