Skip to main content

Multi-atlas Segmentation with Robust Label Transfer and Label Fusion

  • Conference paper
Information Processing in Medical Imaging (IPMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7917))

Included in the following conference series:

  • 4417 Accesses

Abstract

Multi-atlas segmentation has been widely applied in medical image analysis. This technique relies on image registration to transfer segmentation labels from pre-labeled atlases to a novel target image and applies label fusion to reduce errors produced by registration-based label transfer. To improve the performance of registration-based label transfer against registration errors, our first contribution is to propose a label transfer scheme that generates multiple warped versions of each atlas to one target image through registration paths obtained by composing inter-atlas registrations and atlas-target registrations. The problem of decreasing quality of warped atlases caused by accumulative errors in composing multiple registrations is properly addressed by an atlas selection method that is guided by atlas segmentations. To improve the performance of label fusion against registration errors, our second contribution is to integrate the probabilistic correspondence model employed by the non-local mean approach with the joint label fusion technique, both of which have shown excellent performance for label fusion. Experiments on mitral-valve segmentation in 3D transesophageal echocardiography (TEE) show the effectiveness of the proposed techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Artaechevarria, X., Munoz-Barrutia, A., de Solorzano, C.O.: Combination strategies in multi-atlas image segmentation: Application to brain MR data. IEEE TMI 28(8), 1266–1277 (2009)

    Google Scholar 

  2. Asman, A.J., Landman, B.A.: Non-local STAPLE: An intensity-driven multi-atlas rater model. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 426–434. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Avants, B., Epstein, C., Grossman, M., Gee, J.: Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis 12(1), 26–41 (2008)

    Article  Google Scholar 

  4. Cardoso, M.J., Wolz, R., Modat, M., Fox, N.C., Rueckert, D., Ourselin, S.: Geodesic information flows. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 262–270. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Coupe, P., Manjon, J., Fonov, V., Pruessner, J., Robles, N., Collins, D.: Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation. NeuroImage 54(2), 940–954 (2011)

    Article  Google Scholar 

  6. Dice, L.: Measure of the amount of ecological association between species. Ecology 26, 297–302 (1945)

    Article  Google Scholar 

  7. Gass, T., Székely, G., Goksel, O.: Semi-supervised segmentation using multiple segmentation hypotheses from a single atlas. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds.) MCV 2012. LNCS, vol. 7766, pp. 29–37. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Hamm, J., Ye, D., Verma, R., Davatzikos, C.: Gram: A framework for geodesic registration on anatomical manifolds. MedIA 14(5), 633–642 (2010)

    Google Scholar 

  9. Ionasec, R., Voigt, I., Georgescu, B., Wang, Y., Houle, H., Vega-Higuera, F., Navab, N., Comaniciu, D.: Patient-specific modeling and quantification of the aortic and mitral valves from 4-d cardiac ct and tee. IEEE Transactions on Medical Imaging 29(9), 1636–1651 (2010)

    Article  Google Scholar 

  10. Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M., van Ginneken, B.: Multi-atlas-based segmentation with local decision fusion–application to cardiac and aortic segmentation in CT scans. IEEE Trans. on MI 28(7), 1000–1010 (2009)

    Google Scholar 

  11. Grewal, J., Mankad, S., Freeman, W., Click, R., Suri, R., Abel, M., Oh, J., Pellikka, P., Nesbitt, G., Syed, I., Mulvagh, S., Miller, F.: Real-time three-dimensional transesophageal echocardiography in the intraoperative assessment of mitral valve disease. J. Am. Soc. Echocardiogr. 22(1), 34–41 (2009)

    Article  Google Scholar 

  12. Jia, H., Yap, P., Shen, D.: Iterative multi-atlas-based multi-image segmentation with tree-based registration. Neuroimage 59(1), 422–430 (2012)

    Article  Google Scholar 

  13. Sabuncu, M., Yeo, B., Leemput, K.V., Fischl, B., Golland, P.: A generative model for image segmentation based on label fusion. IEEE TMI 29(10), 1714–1720 (2010)

    Google Scholar 

  14. Smith, S., Jenkinson, M., Woolrich, M., Beckmann, C., Behrens, T., JohansenBerg, H., Bannister, P., Luca, M., Drobnjak, I., Flitney, D., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., Stefano, N., Brady, J., Matthews, P.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(suppl. 1), 208–219 (2004)

    Article  Google Scholar 

  15. Sugeng, L., Shernan, S., Salgo, I.S., Weinert, L., Shook, D., Raman, J., Jeevanandam, V., Dupont, F., Settlemier, S., Savord, B., Fox, J., Mor-Avi, V., Lang, R.: Live 3-dimensional transesophageal echocardiography initial experience using the fully-sampled matrix array probe. J. Am. Coll. Cardiol. 52(6), 446–449 (2008)

    Article  Google Scholar 

  16. Vergnat, M., Jassar, A., Jackson, B., Ryan, L., Eperjesi, T., Pouch, A., Weiss, S., Cheung, A., Acker, M., Gorman, J., Gorman, R.: Ischemic mitral regurgitation: a quantitative three-dimensional echocardiographic analysis. Ann. Thorac. Surg. 91(1), 157–164 (2011)

    Article  Google Scholar 

  17. Wang, H., Suh, J.W., Das, S., Pluta, J., Craige, C., Yushkevich, P.: Multi-atlas segmentation with joint label fusion. IEEE Trans. on PAMI 35(3), 611–623 (2013)

    Article  Google Scholar 

  18. Wolz, R., Aljabar, P., Hajnal, J., Hammers, A., Rueckert, D.: Leap: Learning embeddings for atlas propagation. NeuroImage 49(2), 1316–1325 (2010)

    Article  Google Scholar 

  19. Yushkevich, P., Piven, J., Hazlett, H., Smith, R., Ho, S., Gee, J., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, H. et al. (2013). Multi-atlas Segmentation with Robust Label Transfer and Label Fusion. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics