Abstract
Particle filtering has recently been introduced to perform probabilistic tractography in conjunction with DTI and Q-Ball models to estimate the diffusion information. Particle filters are particularly well adapted to the tractography problem as they offer a way to approximate a probability distribution over all paths originated from a specified voxel, given the diffusion information. In practice however, they often fail at consistently capturing the multi-modality of the target distribution. For brain white matter tractography, this means that multiple fiber pathways are unlikely to be tracked over extended volumes.
We propose to remedy this issue by formulating the filtering distribution as an adaptive M-component non-parametric mixture model. Such a formulation preserves all the properties of a classical particle filter while improving multi-modality capture. We apply this multi-modal particle filter to both DTI and Q-Ball models and propose to estimate dynamically the number of modes of the filtering distribution. We show on synthetic and real data how this algorithm outperforms the previous versions proposed in the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. MRM 64(2), 554–566 (2010)
Assaf, Y., Basser, P.: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. NeuroImage 27(1), 48–58 (2005)
Assemlal, H., Tschumperlé, D., Brun, L., Siddiqi, K.: Recent advances in diffusion MRI modeling: Angular and radial reconstruction. MedIA (2011)
Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.: Clustering on the unit hypersphere using von Mises-Fisher distributions. J. of Machine Learning 6, 1345–1382 (2006)
Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. 111(3), 209–219 (1996)
Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. MRM 44(4), 625–632 (2000)
Basser, P.J., Mattiello, J., Le Bihan, D.: MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66(1), 259–267 (1994)
Behrens, T.E.J., Woolrich, M., Jenkinson, M., Johansen-Berg, H., Nunes, R., Clare, S., Matthews, P., Brady, J., Smith, S.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. MRM 50(5), 1077–1088 (2003)
Behrens, T.E.J., Johansen-Berg, H., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage 34(1), 144–155 (2007)
Bhalerao, A., Westin, C.-F.: Hyperspherical von Mises-Fisher mixture (HvMF) modelling of high angular resolution diffusion MRI. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 236–243. Springer, Heidelberg (2007)
Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10(3), 197–208 (2000)
Friman, O., Farnebäck, G., Westin, C.: A Bayesian approach for stochastic white matter tractography. IEEE TMI 25(8), 965–978 (2006)
Gasser, T., Sroka, L., Jennen-Steinmetz, C.: Residual variance and residual pattern in nonlinear regression. Biometrika 73(3), 625–633 (1986)
Jupp, P., Mardia, K.: A unified view of the theory of directional statistics. International Statistical Review 57(3), 261–294 (1989)
Lazar, M.: Mapping brain anatomical connectivity using white matter tractography. NMR in Biomedicine 23(7), 821–835 (2010)
Le Bihan, D.: Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews. Neuroscience 4(6), 469–480 (2003)
McGraw, T., Vemuri, B.: Von Mises-Fisher mixture model of the diffusion ODF. In: IEEE ISBI, pp. 65–68 (2006)
Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology 45(2), 265–269 (1999)
Ozarslan, E., Mareci, T.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. MRM 50(5), 955–965 (2003)
Parker, G., Wheeler-Kingshott, C., Barker, G.: Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE TMI 21(5), 505–512 (2002)
Pontabry, J., Rousseau, F.: Probabilistic tractography using Q-ball modeling and particle filtering. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 209–216. Springer, Heidelberg (2011)
Staempfli, P., Jaermann, T., Crelier, G.R., Kollias, S., Valavanis, A., Boesiger, P.: Resolving fiber crossing using advanced fast marching tractography based on diffusion tensor imaging. NeuroImage 30(1), 110–120 (2006)
Stamm, A., Pérez, P., Barillot, C.: A new multi-fiber model for low angular resolution diffusion MRI. In: IEEE ISBI, pp. 936–939 (2012)
Stejskal, E.O.: Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43, 3597 (1965)
Tuch, D.S.: Q-ball imaging. MRM 52(6), 1358–1372 (2004)
Tuch, D.S., Reese, T., Wiegell, M., Makris, N., Belliveau, J., Wedeen, V.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. MRM 48(4), 577–582 (2002)
Vermaak, J., Doucet, A., Pérez, P.: Maintaining multimodality through mixture tracking. In: IEEE ICCV, vol. 2, pp. 1110–1116 (2003)
Zhang, F., Hancock, E., Goodlett, C., Gerig, G.: Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling. MedIA 13(1), 5–18 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stamm, A., Commowick, O., Barillot, C., Pérez, P. (2013). Adaptive Multi-modal Particle Filtering for Probabilistic White Matter Tractography. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_50
Download citation
DOI: https://doi.org/10.1007/978-3-642-38868-2_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38867-5
Online ISBN: 978-3-642-38868-2
eBook Packages: Computer ScienceComputer Science (R0)