Skip to main content

Adaptive Multi-modal Particle Filtering for Probabilistic White Matter Tractography

  • Conference paper
Information Processing in Medical Imaging (IPMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7917))

Included in the following conference series:

Abstract

Particle filtering has recently been introduced to perform probabilistic tractography in conjunction with DTI and Q-Ball models to estimate the diffusion information. Particle filters are particularly well adapted to the tractography problem as they offer a way to approximate a probability distribution over all paths originated from a specified voxel, given the diffusion information. In practice however, they often fail at consistently capturing the multi-modality of the target distribution. For brain white matter tractography, this means that multiple fiber pathways are unlikely to be tracked over extended volumes.

We propose to remedy this issue by formulating the filtering distribution as an adaptive M-component non-parametric mixture model. Such a formulation preserves all the properties of a classical particle filter while improving multi-modality capture. We apply this multi-modal particle filter to both DTI and Q-Ball models and propose to estimate dynamically the number of modes of the filtering distribution. We show on synthetic and real data how this algorithm outperforms the previous versions proposed in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. MRM 64(2), 554–566 (2010)

    Google Scholar 

  2. Assaf, Y., Basser, P.: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. NeuroImage 27(1), 48–58 (2005)

    Article  Google Scholar 

  3. Assemlal, H., Tschumperlé, D., Brun, L., Siddiqi, K.: Recent advances in diffusion MRI modeling: Angular and radial reconstruction. MedIA (2011)

    Google Scholar 

  4. Banerjee, A., Dhillon, I., Ghosh, J., Sra, S.: Clustering on the unit hypersphere using von Mises-Fisher distributions. J. of Machine Learning 6, 1345–1382 (2006)

    MathSciNet  Google Scholar 

  5. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. 111(3), 209–219 (1996)

    Article  Google Scholar 

  6. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. MRM 44(4), 625–632 (2000)

    Article  Google Scholar 

  7. Basser, P.J., Mattiello, J., Le Bihan, D.: MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66(1), 259–267 (1994)

    Article  Google Scholar 

  8. Behrens, T.E.J., Woolrich, M., Jenkinson, M., Johansen-Berg, H., Nunes, R., Clare, S., Matthews, P., Brady, J., Smith, S.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. MRM 50(5), 1077–1088 (2003)

    Article  Google Scholar 

  9. Behrens, T.E.J., Johansen-Berg, H., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage 34(1), 144–155 (2007)

    Article  Google Scholar 

  10. Bhalerao, A., Westin, C.-F.: Hyperspherical von Mises-Fisher mixture (HvMF) modelling of high angular resolution diffusion MRI. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 236–243. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10(3), 197–208 (2000)

    Article  Google Scholar 

  12. Friman, O., Farnebäck, G., Westin, C.: A Bayesian approach for stochastic white matter tractography. IEEE TMI 25(8), 965–978 (2006)

    Google Scholar 

  13. Gasser, T., Sroka, L., Jennen-Steinmetz, C.: Residual variance and residual pattern in nonlinear regression. Biometrika 73(3), 625–633 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jupp, P., Mardia, K.: A unified view of the theory of directional statistics. International Statistical Review 57(3), 261–294 (1989)

    Article  MATH  Google Scholar 

  15. Lazar, M.: Mapping brain anatomical connectivity using white matter tractography. NMR in Biomedicine 23(7), 821–835 (2010)

    Article  MathSciNet  Google Scholar 

  16. Le Bihan, D.: Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews. Neuroscience 4(6), 469–480 (2003)

    Article  Google Scholar 

  17. McGraw, T., Vemuri, B.: Von Mises-Fisher mixture model of the diffusion ODF. In: IEEE ISBI, pp. 65–68 (2006)

    Google Scholar 

  18. Mori, S., Crain, B.J., Chacko, V.P., van Zijl, P.C.: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology 45(2), 265–269 (1999)

    Article  Google Scholar 

  19. Ozarslan, E., Mareci, T.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. MRM 50(5), 955–965 (2003)

    Article  Google Scholar 

  20. Parker, G., Wheeler-Kingshott, C., Barker, G.: Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE TMI 21(5), 505–512 (2002)

    Google Scholar 

  21. Pontabry, J., Rousseau, F.: Probabilistic tractography using Q-ball modeling and particle filtering. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 209–216. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Staempfli, P., Jaermann, T., Crelier, G.R., Kollias, S., Valavanis, A., Boesiger, P.: Resolving fiber crossing using advanced fast marching tractography based on diffusion tensor imaging. NeuroImage 30(1), 110–120 (2006)

    Article  Google Scholar 

  23. Stamm, A., Pérez, P., Barillot, C.: A new multi-fiber model for low angular resolution diffusion MRI. In: IEEE ISBI, pp. 936–939 (2012)

    Google Scholar 

  24. Stejskal, E.O.: Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43, 3597 (1965)

    Article  Google Scholar 

  25. Tuch, D.S.: Q-ball imaging. MRM 52(6), 1358–1372 (2004)

    Article  Google Scholar 

  26. Tuch, D.S., Reese, T., Wiegell, M., Makris, N., Belliveau, J., Wedeen, V.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. MRM 48(4), 577–582 (2002)

    Article  Google Scholar 

  27. Vermaak, J., Doucet, A., Pérez, P.: Maintaining multimodality through mixture tracking. In: IEEE ICCV, vol. 2, pp. 1110–1116 (2003)

    Google Scholar 

  28. Zhang, F., Hancock, E., Goodlett, C., Gerig, G.: Probabilistic white matter fiber tracking using particle filtering and von Mises-Fisher sampling. MedIA 13(1), 5–18 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stamm, A., Commowick, O., Barillot, C., Pérez, P. (2013). Adaptive Multi-modal Particle Filtering for Probabilistic White Matter Tractography. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics