Skip to main content

Dictionary Learning on the Manifold of Square Root Densities and Application to Reconstruction of Diffusion Propagator Fields

  • Conference paper
Information Processing in Medical Imaging (IPMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7917))

Included in the following conference series:

Abstract

In this paper, we present a novel dictionary learning framework for data lying on the manifold of square root densities and apply it to the reconstruction of diffusion propagator (DP) fields given a multi-shell diffusion MRI data set. Unlike most of the existing dictionary learning algorithms which rely on the assumption that the data points are vectors in some Euclidean space, our dictionary learning algorithm is designed to incorporate the intrinsic geometric structure of manifolds and performs better than traditional dictionary learning approaches when applied to data lying on the manifold of square root densities. Non-negativity as well as smoothness across the whole field of the reconstructed DPs is guaranteed in our approach. We demonstrate the advantage of our approach by comparing it with an existing dictionary based reconstruction method on synthetic and real multi-shell MRI data.

This research was in part funded by the NIH grant NS066340 to Baba C. Vemuri, and the following grants AFOSR FA9550-12-1-0304, ONR N000141210862, NSF CCF-1018149 to Alireza Entezari.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Basser, P., Mattiello, J., Lebihan, D.: Estimation of the effective self-diffusion tensor from the nmr spin echo. Journal of Magnetic Resonance (1994)

    Google Scholar 

  2. Callaghan, P.T.: Principles of nuclear magnetic resonance microscopy. Oxford University Press (1991)

    Google Scholar 

  3. Ozarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). Neuroimage (2006)

    Google Scholar 

  4. Jian, B., Vemuri, B.C., Ozarslan, E., Carney, P.R., Mareci, T.H.: A novel tensor distribution model for the diffusion-weighted MR signal. NeuroImage (2007)

    Google Scholar 

  5. Descoteaux, M., Deriche, R., Bihan, D.L., Mangin, J., Poupon, C.: Multiple q-shell diffusion propagator imaging. MIA (2011)

    Google Scholar 

  6. Assemlal, H., Tschumperle, D., Brun, L., Siddiqi, K.: Recent advances in diffusion MRI modeling: Angular and radial reconstruction. MIA (2011)

    Google Scholar 

  7. Aharon, M., Elad, M., Bruckstein, A.: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing (2006)

    Google Scholar 

  8. Fletcher, P., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Processing (2007)

    Google Scholar 

  9. Sra, S., Cherian, A.: Generalized dictionary learning for symmetric positive definite matrices with application to nearest neighbor retrieval. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS (LNAI), vol. 6913, pp. 318–332. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Caruyer, E., Deriche, R.: Diffusion MRI signal reconstruction with continuity constraint and optimal regularization. MIA (2012)

    Google Scholar 

  11. Tuch, D.S.: Q-ball imaging. MRM (2004)

    Google Scholar 

  12. Wedeen, V.J., Hagmann, P., Tseng, W.Y., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. MRM (2005)

    Google Scholar 

  13. Pickalov, V., Basser, P.: 3D tomographic reconstruction of the average propagator from MRI data. In: ISBI (2006)

    Google Scholar 

  14. Wu, Y., Alexander, A.: Hybrid diffusion imaging. NeuroImage (2007)

    Google Scholar 

  15. Ye, W., Portony, S., Entezari, A., Blackband, S.J., Vemuri, B.C.: An efficient interlaced multi-shell sampling scheme for reconstruction of diffusion propagators. IEEE TIP (2012)

    Google Scholar 

  16. Bilgic, B., Setsompop, K., Cohen-Adad, J., Wedeen, V., Wald, L.L., Adalsteinsson, E.: Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 1–9. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Merlet, S., Caruyer, E., Deriche, R.: Parametric dictionary learning for modeling EAP and ODF in diffusion MRI. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 10–17. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Ye, W., Vemuri, B.C., Entezari, A.: An over-complete dictionary based reguralized reconstruction of a field of ensemble average propagators. In: ISBI (2012)

    Google Scholar 

  19. Schwab, E., Afsari, B., Vidal, R.: Estimation of non-negative ODFs using the eigenvalue distribution of spherical functions. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 322–330. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Cheng, J., Jiang, T., Deriche, R.: Nonnegative definite EAP and ODF estimation via a unified multi-shell HARDI reconstruction. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 313–321. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Spivak, M.: A comprehensive introduction to differential geometry. Publish or Perish, Berkeley (1979)

    Google Scholar 

  22. Cetingul, H.E., Vidal, R.: Sparse Riemannian manifold clustering for HARDI segmentation. In: ISBI (2011)

    Google Scholar 

  23. Absil, P., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press (2008)

    Google Scholar 

  24. Rao, C.R.: Information and accuracy attainable in the estimation of statitical parameters. Bull. Calcutta Math. Soc. (1945)

    Google Scholar 

  25. Srivastava, A., Jermyn, I., Joshi, S.: Riemannian analysis of probability density functions with applications in vision. In: CVPR (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, J. et al. (2013). Dictionary Learning on the Manifold of Square Root Densities and Application to Reconstruction of Diffusion Propagator Fields. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics