Abstract
The clustering of fibers into bundles is an important task in studying the structure and function of white matter. Existing technology mostly relies on geometrical features, such as the shape of fibers, and thus only provides very limited information about the neuroanatomical function of the brain. We advance this issue by proposing a multinomial representation of fibers decoding their connectivity to gray matter regions. We then simplify the clustering task by first deriving a compact encoding of our representation via the logit transformation. Furthermore, we define a distance between fibers that is in theory invariant to parcellation biases and is equivalent to a family of Riemannian metrics on the simplex of multinomial probabilities. We apply our method to longitudinal scans of two healthy subjects showing high reproducibility of the resulting fiber bundles without needing to register the corresponding scans to a common coordinate system. We confirm these qualitative findings via a simple statistical analyse of the fiber bundles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhang, Y., Zhang, J., Oishi, K., Faria, A., Jiang, H., Li, X., Akhter, K., Rosa-Neto, P., Pike, G.B., Evans, A.C., Toga, A.W., Woods, R.P., Mazziotta, J.C., Miller, M.I., van Zijl, P.C.M., Mori, S.: Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. NeuroImage 52(4), 1289–1301 (2010)
Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., Thiran, J.P.: Mapping human whole-brain structural networks with diffusion MRI. PloS One 2(7), 597 (2007)
Guevara, P., Poupon, C., Rivire, D., Cointepas, Y., Descoteaux, M., Thirion, B., Mangin, J.F.: Robust clustering of massive tractography datasets. NeuroImage 54(3), 1975–1993 (2011)
Lenglet, C., Campbell, J.S.W., Descoteaux, M., Haro, G., Savadjiev, P., Wassermann, D., Anwander, A., Deriche, R., Pike, G.B., Sapiro, G.: Mathematical methods for diffusion MRI processing. NeuroImage 45(1), 111–122 (2009)
Gerig, G., Gouttard, S., Corouge, I.: Analysis of brain white matter via fiber tract modeling. In: International Conference on Biomedical and Health Informatics, p. 426 (2004)
O’Donnell, L.J., Wells III, W.M., Golby, A.J., Westin, C.-F.: Unbiased groupwise registration of white matter tractography. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 123–130. Springer, Heidelberg (2012)
Wang, Q., Yap, P.-T., Jia, H., Wu, G., Shen, D.: Hierarchical fiber clustering based on multi-scale neuroanatomical features. In: Liao, H., Edwards, P.J., Pan, X., Fan, Y., Yang, G.-Z. (eds.) MIAR 2010. LNCS, vol. 6326, pp. 448–456. Springer, Heidelberg (2010)
Aitchison, J., Shen, S.: Logistic Normal Distributions: Some Properties and Uses. Biometrika 67(2), 261–272 (1980)
Bouguila, N., Ziou, D., Vaillancourt, J.: Unsupervised learning of a finite mixture model based on the dirichlet distribution and its application. IEEE Transactions on Image Processing 13(11), 1533–1543 (2004)
Neal, R.M.: Markov chain sampling methods for dirichlet process mixture models. Journal of Computational and Graphical Statistics 9(2), 249–265 (2000)
Aitchison, J., Begg, C.B.: Statistical diagnosis when basic cases are not classified with certainty. Biometrika 63(1), 1–12 (1976)
Pohl, K.M., Fisher, J.W., Bouix, S., Shenton, M.E., McCarley, R.W., Grimson, W.E.L., Kikinis, R., Wells, W.M.: Using the logarithm of odds to define a vector space on probabilistic atlases. Medical Image Analysis 11(5), 465–477 (2007)
Desikan, R., Segonne, F., Fischl, B., Quinn, B., Dickerson, B., Blacker, D., Buckner, R., Dale, A., Maguire, R., Hyman, B., Albert, M., Killiany, R.: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest. NeuroImage 31(2) (2006)
Cook, P.A., Bai, Y., Gilani, N.S., Seunarine, K.K., Hall, M.G., Parker, G.J., Alexander, D.C.: Camino: Open-Source Diffusion-MRI Reconstruction and Processing. In: Scientific Meeting of the International Society for Magnetic Resonance in Medicine, p. 2759 (2006)
Friman, O., Farneback, G., Westin, C.F.: A bayesian approach for stochastic white matter tractography. IEEE Transactions on Medical Imaging 25(8), 965–978 (2006)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society B 39(1), 1–38 (1977)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tunç, B. et al. (2013). Multinomial Probabilistic Fiber Representation for Connectivity Driven Clustering. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_61
Download citation
DOI: https://doi.org/10.1007/978-3-642-38868-2_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38867-5
Online ISBN: 978-3-642-38868-2
eBook Packages: Computer ScienceComputer Science (R0)