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Abstract
The clustering of fibers into bundles is an important task in studying the structure and function of
white matter. Existing technology mostly relies on geometrical features, such as the shape of
fibers, and thus only provides very limited information about the neuroanatomical function of the
brain. We advance this issue by proposing a multinomial representation of fibers decoding their
connectivity to gray matter regions. We then simplify the clustering task by first deriving a
compact encoding of our representation via the logit transformation. Furthermore, we define a
distance between fibers that is in theory invariant to parcellation biases and is equivalent to a
family of Riemannian metrics on the simplex of multinomial probabilities. We apply our method
to longitudinal scans of two healthy subjects showing high reproducibility of the resulting fiber
bundles without needing to register the corresponding scans to a common coordinate system. We
confirm these qualitative findings via a simple statistical analyse of the fiber bundles.
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1 Introduction
Research in the area of fiber clustering has resulted in subject- as well as population-specific
characterization of the white matter brain structures[1,2]. Clustering algorithm group fibers
into feature-based bundles. The resulting fiber bundles delineate different characteristics of
white matter regions depending on which features are described by the underlying fiber
representation. Existing fiber representations and clustering techniques mostly rely on
geometrical features, such as their shape and placement in the 3D space [3]. Groupings
based on these features give a brief picture of the structure of the white matter but largely
fail to provide information for the further analyses of their neuroanatomical functions, i.e
connectivity between brain regions [4]. In this work, we address this issue by proposing a
multinomial representation of fibers based on brain connectivity.

We first introduce multinomial feature vectors, called connectivity vectors, which capture
the posterior probabilities of a voxel being connected to a set of ROIs. A fiber is encoded by
the voxels it passes through as well as the corresponding connectivity vectors at those
voxels. We then create a compact multinomial representation for the whole fiber by fusing
the corresponding connectivity vectors via the logit transformation. The logit transform
enables us to map the connectivity vectors, which are members of the M dimensional
simplex , to the Euclidean space ℝM, where norm and inner product are defined naturally.
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In other words, we can perform all calculations in ℝM without needing to pay attention to
the geometric properties of the manifold spanned by connectivity vectors in .

We complete our representation with the definition of a distance measure, which is essential
for clustering. The Hausdorff distance is one of the most popular distances for fibers
represented by their geometrical features [5]. However, such a distance does not account for
the neuroanatomical functions of fibers neither allow any statistical inference. In [6], authors
use kernel density estimation to transform such distances into probabilities and apply it to
statistical decision modelling. An alternative was recently proposed by [7], who measure the
possible diffusion pathways between predefined ROIs and fibers via the Mahalanobis
distance. We also propose the use of the Mahalanobis distance for fibers represented by the
connectivity vectors in ℝM. We show that the distance is invariant to the parcellation biases
over ROIs by proving that this metric is a specific instance of the family of prior invariant
distances on . This property is important for clustering as it allows us to ignore
implementations issues related to the calculation of the probabilities, e.g. representing fibers
by likelihoods or posteriors.

One of the most important characteristic of the proposed representation is the fact that
individual fibers and fiber bundles are treated as statistical objects invariant to the image
coordinate system. Although it is possible to perform longitudinal or population based
studies by analyzing fibers via 3D coordinates [6], an important novelty of the proposed
work is the use of informative posteriors related to the connection of fibers to ROIs. In
addition, our representation enables the analysis for these type of studies without needing to
register the fibers to a common coordinate system. Finally, it allows hypothesis driven
statistical analysis over fiber bundles, and can be thought as a first step in creating a
probabilistic fiber atlases. This type of analysis requires the bundles to be comparable across
the scans to be studied. We evaluate the reproducibility over our approach by applying our
representation to the base line and follow up scans of two different subjects. The results are
consistent allowing us to visually pinpoint the same fiber bundle across scans as well as
perform statistical analyses on the bundles for quantitatively comparison.

2 Fiber Representation
We now describe our representation whose encoding of fibers is based on their connections
to ROIs. These connections are captured at each voxel of the fiber by multinomial vectors,
called connectivity vectors. We derive a compact representation of fibers, called connectivity
signature, by fusing these connectivity vectors via the logit function. We complete the
description of our representation by deriving a metric naturally inferred from the space
spanned by the connectivity signatures.

2.1 Multinomial Fiber Representation
We view fibers as a collection of voxels and their corresponding probabilistic connectivity
vectors. Specifically, let ℝM denote M-dimensional real space and

is the M-dimensional simplex. u0 is usually defined as  so that the vector u ≡
(u0, u1, …, uM) ∈  has M degrees of freedom. In the remainder, we therefore represent u
only by its independent components, i.e. u ≡ (u1, …, uM), and mention u0 where necessary.
With respect to our representation, the multinomial vector u(x) ∈  captures the posterior
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probability of a given voxel x being connected to the ROIs (for instance gray matter regions)
{G1, …, GM} in the image I. We compute the posteriors based on the outcome of
probabilistic tractography (see Section 3 for further details). We call u(x) the connectivity
vector and formally define it as

(1)

We note that the probability  is the posterior probability that
a given voxel x is not connect to any ROI. Furthermore, we could have u(x) represent
likelihoods instead of posteriors. The reason we prefer using posterior probabilities is their
superiority in terms of connectivity interpretations. The multinomial vector itself simply
explains all possible connections of a voxel. We also assume that the connectivity vectors
u(x) are independently drawn from a logistic normal distributions [8] for each voxel x. A
popular alternative would have been the Dirichlet distribution [9,10]. However, any
Dirichlet distribution can be approximated with a suitable logistic normal distribution [11].
In addition, the logistic normal distribution better fits into the modelling performed in the
remainder of this article.

The main intuition behind this probabilistic representation is to enhance the results of
deterministic tractography with the notion of uncertainty. This uncertainty is especially
helpful in fiber clustering as it provides additional information for separating fibers with
respect to just the two regions marking the fiber’s ends. This observation leads us to the
following definition: A fiber f in the image I is a collection of voxels x and corresponding
connectivity vectors u(x) ∈ . For sake of clarity, connectivity vectors, u(x), will from now
on be denoted as u.

One way to represent a fiber is now as a matrix composed of the connectivity vectors u.
Figure 1(a) shows a red fiber inside a bundle of the Corpus Callosum together with its
matrix representation in Figure 1(b). As expected, the matrix clearly favours two regions,
which are the ones touched by the ends of the fiber. Furthermore, the matrix also implicitly
encodes geometric properties of the fiber by the changes in the multinomial distribution
when moving along the path.

2.2 Log Odds Representation of Fibers
Representing fibers as collections of multinomial vectors enables in-depth analyses over
individual fibers. However one may want a more compact representation that can be used
for immediate reasoning such as “which regions does the fiber connect with the highest
probabilities ?”. To derive such a compact representation, we now map the multinomial
random vectors u from the simplex  to the Euclidean space ℝM. By doing so, we can
compress the set of connectivity vectors representing a fiber without the constraints of the
simplex.

Given that u is drawn from a logistic normal distribution, the most suitable homeomorphism
between  and ℝM is the logit transform [8]. The log odds vector v(x) ∈ ℝM is then defined
as the logit transform of the connectivity vector u(x):

(2)

The inverse is called the logistic function σ(·) mapping v ∈ ℝM to u ∈ 
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(3)

Similar to the definition of a fiber f, a log odds fiber l is then defined as a collection of
voxels x and corresponding log odds vectors v(x).

To define a compact representation of the log odds fiber l, we parametrize it with respect to
the discrete arc length s ∈ [0, 1], where l(s) ≡ v(x). Furthermore, we introduce the weight
function w(s) ∈ [0, 1] enabling us to emphasize specific parts of the fiber. Our compact
representation is motivated by the assumption that the connectivity vectors u(x) are
independently drawn for each voxel x as well as the fact that the normalized multiplication
between u(x) translates to the sum of v(x) [12]. A natural definition for a compact log odds
fiber representation, F ∈ ℝM, is thus by the weighted sum of the log odds vectors across the
fiber

(4)

Now, the compact multinomial representation for a fiber is the sigmoid function applied to
F:

(5)

We call , the connectivity signature of fiber f as this multinomial vector summarizes the
connectivity of f to the ROIs. One of the most useful properties of the logit transformation is
that v ∈ ℝM is drawn from a multivariate Gaussian defined by (μ, Σ) as u ∈  is drawn
from a logistic normal distribution [8] (see Section 2.1). Thus, the log odds representation F
of a fiber is again drawn from a Gaussian distribution since the summation of independent
normally distributed random variables is also another normally distributed random variable.
Furthermore, the connectivity signature  must then also be drawn from the logistic normal
distribution.

An important property of the proposed log odds fiber representation is the fact that the mean
and covariance have real statistical meanings unlike in other representations, such as in [7].
For instance, if we apply the inverse logit function to μ, we get a multinomial vector in 
which summarizes the average connection probabilities of fiber bundles. Similarly, Σ gives
the covariances among connection probabilities of different ROIs.

We end this discussion by pointing out that all the fibers extracted from an image I can be
represented by a matrix composed of their connectivity signatures. Figure 1(c) shows an
example of such a matrix representing fibers seeded from Corpus Callosum. Note, that the
matrix represents all fibers independent of the image orientation. Assuming the generation
of fibers is stable across scans, this matrix thus provides a mechanism for performing
statistics on fibers among a set of scans without needing to register them beforehand. These
assumptions will be justified by the experiments of Section 3.

2.3 Metrics in  and ℝM

Applications such as fiber clustering rely on metrics that properly measure the distance
between fibers. We now define such a metric for our proposed fiber representation.
Specifically, let F1 and F2 be the compact log odds representations of two fibers with  and
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 being their corresponding multivariate counter-parts. As in our model log odds fibers F
are normally distributed, a natural metric is the Mahalanobis distance

(6)

where Σ is the covariance matrix of their distribution. An alternative motivation behind the
Mahalanobis distance is its independence to the prior. In the remainder of this section, we
will derive this property by first constructing Riemanian manifolds of the commutative
Abelian group  as defined in [12], whose metrics are independent of the prior. We then
show the equivalence of the Mahalanobis distances to a specific subset of these metrics.
Finally, we discuss the importance of the prior invariance for the implementation of our
representation.

In [12], the addition operation, ⊗, between connection signatures  and  ∈  is defined
as  ⊗  ≡ σ(logit( ) + logit( )) = σ (F1 + F2) while the inverse is  ≡
σ(−logit( )). Now, let 1T ≡ (1, …, 1) then the corresponding tangent space is   ≡ {w ∈
ℝM+1 |1T w = 0} as the inner product of 1 with any curve on the Simplex uε = u+ε · w+O(ε2)
∈  has to be one, i.e. 1T uε = 1. Thus, the logarithm function, LOG :  →  , projecting
the simplex to the tangent space, is

where I is the identity matrix. Finally, the family of prior invariant metrics on the
commutative Abelian group  is defined by

(7)

where the concentration matrix GR is positive definite. We show the prior invariance of dR(·,
·) by denoting the posterior as upst ≡ (p(G1|I, x), …, p(GM |I, x)), the normalized likelihood
as ulkh ≡ (p(x|I, G1), …, p(x|I, GM)) and the prior as upri ≡ (p(G1), …, p(GM)). According
to [12], adding the prior to the likelihood via ⊗ is equivalent to Bayes’ rule as upst = ulkh ⊗

upri and the identity  holds for any u1, u2, p ∈ . Then,

the distance  defined on  is invariant to priors as

so that

(8)

If we now define α ≡ (1, 0, …, 0) and specify the concentration matrix as GR ≡ M2(I − α1T)
Σ−1(I − 1αT) then the resulting Riemannian metric is equivalent to the Mahalnobis distance
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of Equation (6): . Thus, the Mahalanobis distance is invariant to
any prior, i.e. bias shared among fibers. One of these factors are the priors of ROIs
corresponding to their size and shapes. The probabilities in connectivity vectors u (and
therefore in ) are highly correlated with the partitioning of ROIs since shapes and size of
these regions will change the fraction of fibers reaching them. Another important conclusion
from the prior invariance is that distances between fibers are not impacted by ones choice of
calculating posterior probabilities or normalized likelihoods for the definition of the
multinomial vectors u. In summary, choosing the Mahalanobis distance as a metric for fibers
greatly simplifies the implementation of our representation due to its invariance to priors.

We end this section by revisiting one more time the multivariate logistic-normal (MLN)
distribution that is assumed as a prior over vector u ∈ . One important property is that
MLN distribution has more flexibility than the popular Dirichlet distribution, which is the
conjugate of the multinomial. The Dirich-let distribution has a single concentration
parameter, while MLN has a covariance matrix. This relation corresponds to the distinction
between Mahalanobis distance, which is parameterized by a covariance matrix, and KL
divergence or the Fisher metric, which have no such parameter. The invariance properties
that we have described above may be of some interest to the community that uses MLN for
modeling and analysis.

3 Fiber Clustering
We now apply the proposed representation for the clustering of fibers. Our goal is to test the
consistency of the corresponding fiber bundles on longitudinal scans as well as across
subjects. Consistency across scans is important for the reliability of studies analyzing the
changes in the bundles.

3.1 Clustering Algorithm
Our experiment is based on T1 and DTI images of 2 female subjects. Each subject was
scanned twice two weeks apart. The scans were acquired on a Siemens 3T VerioTM scanner
using a single-shot, spin-echo, echo-planar sequence (TR/TE=11400/78ms, b-value 1000 s/
mm2, and 64 gradient directions). We separately created a gray matter parcellation for each
DTI scan by applying FreeSurfer to the corresponding T1 image, which was affinely aligned
to the DTI [13]. Note, the deformation map created by FreeSurfer is only defined for the
gray matter. Inverting the map thus does not accurately register the DTI scan to the atlas of
FreeSurfer. Analyses based on our fiber representation has no use for such registrations as
our statistical model is invariant to the image coordinate system.

The log odds representations of fibers are created by first extracting the fibers using a
streamline tractography [14] and then computing the corresponding connectivity vectors via
probabilistic tractography [15]. Specifically, we perform the following steps: (1) create
fibers via streamline tractography seeded from the Corpus Collosum, (2) for each fiber, run
the probabilistic tractography seeded at each voxel defining the fiber, (3) for each voxel x of
the fiber, compute the multinomial vector u(x) of Equation 1 by defining the posterior
probability p(Gi|I, x) as the fraction of fibers seeded at this voxel and reaching ROI Gi, (5)
calculate the log odds vector v(x) by Equation 2, (6) generate the final log odds
representation, F, via Equation 4. Finally, we compute the connectivity signatures, , of
Equation 5 for visualization and interpretation purposes.

Based on this protocol, we expect our clustering approach to produce very similar fiber
bundles for the two time points of each subject.
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To cluster the fibers, one could make the simplifying assumption that all fibers are drawn
from a common Gaussian distribution. While this model is simple to implement, the
resulting fiber bundles of our data set were very inconsistent as the assumption of all fibers
being drawn from a single Gaussian distribution is not realistic. We discovered that the
multinomial representations of fibers seeded at different white matter (WM) regions greatly
vary due to the drastic differences in the connectivity of different WM regions.

We thus instead assume that the fibers are drawn from a mixture of logistic normal
distributions in , which is a mixture of Gaussians in ℝM. We estimate the mixture of
Gaussians via the Expectation-Maximization (EM) procedure [16]. By doing so, we
implicitly make use of the Mahalanobis distance between fibers and mixture components’
mean vectors for assigning fibers to mixture components. Hence, the mixture assignment is
driven by the Mahalanobis distance thus still inheriting the proposed invariance to the
common priors.

The clustering was solely performed on the connectivity signatures, such as the one shown
in Figure 2. While the numbers of fibers and their orderings are different across the matrices,
the matrices themselves are independent of the image coordinate system. They thus do not
need to be registered for evaluating the reproducibility of our method.

3.2 Clustering Results
Finally, we review the fiber bundles extracted by our approach for the two subjects with two
time points. Figure 3 shows the outcome of our approach for assigning the tracts to 7 fiber
bundles. The consistency between the results of baseline and follow up is evident for both
subjects. Similarly, there is a high consistency between subjects. We further challenge the
repeatability of the algorithm by increasing the number of clusters. Figure 4 shows the
outcome with 25 fiber bundles for a single subject. Even with such a fine grain clustering,
intra-person consistency is excellent making it possible to pinpoint corresponding fiber
bundles across these scans. This qualitative assessment seem to indicate that the proposed
clustering algorithm exhibits a strong repeatability in terms of fiber groupings. The results in
Figure 3,4 were generated without registering the DTI images. Thus, the consistency in
clustering justifies the invariance of our proposed metric to priors over ROIs since
individual registrations tend to have minor changes in shapes and sizes of ROIs.

We complement this qualitative interpretations with a quantitative assessment, which also
provides an example on doing statistical analysis based on our representation. Fiber bundles
generated by the clustering can be treated as statistical objects as each fiber is represented by
a multinomial vector. One may assume each bundle as a distribution of such multinomial
vectors and then can compare these distributions across scans. We do by representing each
fiber bundle via its mean connectivity signature and then comparing signatures across scans
via the symmetric KullbackLeibler (KL) divergence which is defined by

(9)

where  (i) is the ith element of the mean connectivity signature  of a fiber bundle in scan
j.

Our comparison of bundles across scans specifically focus on those pairs that match, i.e.
have the lowest divergence score. Figure 5 shows the matched fiber bundle from four
different scans and their corresponding symmetric KL-Divergence scores with respect to the
first scan. First, we note that the score seems to reflect the geometrical properties of the
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bundle. The more similar the bundles look, the lower the score. Second, as expected, the
bundle of the follow up scan of the same subject received the lowest score.

Table 1 lists the average symmetric KL divergence of the four different scans clustered into
7 bundles (see Figure 3). The average symmetric KL divergence was computed across the 7
bundles that best matched between scans. Note, the values of intra-subject pairs are always
lower than values of inter-subject pairs. These quantitative results seem to echo the
qualitative assessment that the bundles generated via our representation are highly
consistent.

4 Conclusion
We developed a multinomial representation of fibers decoding their connectivity to gray
matter regions. We simplified clustering these fibers into bundles by deriving a compact
encoding of that representation via the logit transformation. Furthermore, we created a
distance measure that is invariant to parcellation biases by deriving the family of prior
invariant metrics on the simplex of multinomial probabilities. We applied our method on
longitudinal scans of two healthy subjects showing high reproducibility of the resulting fiber
bundles without needing to register the corresponding scans to a common coordinate system.
We confirmed these qualitative findings by measuring the symmetric KL-Divergence of
bundles across scans.
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Fig. 1.
(a) A fiber bundle from Corpus Callosum together with the (b) set of connectivity vectors u
of the fiber in red and (c) connectivity signatures  of all individual fibers in the bundle.
The x-axis of both matrices represents the ROI index. Blue indicates low and red high
probabilities being connected to a specific ROIs. Note, how the connectivity vectors
implicitly represent the geometry of the fiber in red. The connectivity signature on the other
side summarizes the favoured regions by the whole bundle, which seem to be six.
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Fig. 2.
Connectivity signatures of Corpus Callosum corresponding to different scans of a subject.
The x-axis represents ROI index. Each row corresponds to connectivity signature  of a
fiber. Colors indicate the connection probabilities to ROIs. Note, the common patterns of
connections even though the scans are not registered or fibers are not ordered.
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Fig. 3.
Results showing reproducibility of fiber bundles with the proposed representation. Images
show clustering of Corpus Callosum with 7 clusters for two subjects. Left and right images
correspond to different scans of a subject. Note, the intra-subject consistency for both
subjects.
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Fig. 4.
Results showing reproducibility of fiber bundles with the proposed representation. Images
show clustering of Corpus Callosum of Subject 1, with 25 clusters. Left and right images
correspond two different time point scans of the subject. Intra-person consistency is
excellent even with a fine grain clustering.
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Fig. 5.
Same fiber bundle in four different scans of two subjects (S1, S2) and two time points (T1,
T2). Matching of bundles is performed by KL divergence measure. The values in
parentheses are the distances from the first bundle. Thank to our multinomial representation,
corresponding fiber bundles across scans can be matched by using probabilistic measures
like KL divergence.
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Table 1

The average symmetric KL divergence between the mean signature values of matching bundles of two
subjects (S1, S2) and two time points (T1, T2). The intra-person distances are always lower than that of inter-
person.

S1-T1 S1-T2 S2-T1 S2-T2

S1-T1 0 1.68 1.92 3.01

S1-T2 1.68 0 3.05 3.63

S2-T1 1.92 3.05 0 1.24

S2-T2 3.01 3.63 1.24 0
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