Skip to main content

Multinomial Probabilistic Fiber Representation for Connectivity Driven Clustering

  • Conference paper
Information Processing in Medical Imaging (IPMI 2013)

Abstract

The clustering of fibers into bundles is an important task in studying the structure and function of white matter. Existing technology mostly relies on geometrical features, such as the shape of fibers, and thus only provides very limited information about the neuroanatomical function of the brain. We advance this issue by proposing a multinomial representation of fibers decoding their connectivity to gray matter regions. We then simplify the clustering task by first deriving a compact encoding of our representation via the logit transformation. Furthermore, we define a distance between fibers that is in theory invariant to parcellation biases and is equivalent to a family of Riemannian metrics on the simplex of multinomial probabilities. We apply our method to longitudinal scans of two healthy subjects showing high reproducibility of the resulting fiber bundles without needing to register the corresponding scans to a common coordinate system. We confirm these qualitative findings via a simple statistical analyse of the fiber bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, Y., Zhang, J., Oishi, K., Faria, A., Jiang, H., Li, X., Akhter, K., Rosa-Neto, P., Pike, G.B., Evans, A.C., Toga, A.W., Woods, R.P., Mazziotta, J.C., Miller, M.I., van Zijl, P.C.M., Mori, S.: Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. NeuroImage 52(4), 1289–1301 (2010)

    Article  Google Scholar 

  2. Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., Thiran, J.P.: Mapping human whole-brain structural networks with diffusion MRI. PloS One 2(7), 597 (2007)

    Article  Google Scholar 

  3. Guevara, P., Poupon, C., Rivire, D., Cointepas, Y., Descoteaux, M., Thirion, B., Mangin, J.F.: Robust clustering of massive tractography datasets. NeuroImage 54(3), 1975–1993 (2011)

    Article  Google Scholar 

  4. Lenglet, C., Campbell, J.S.W., Descoteaux, M., Haro, G., Savadjiev, P., Wassermann, D., Anwander, A., Deriche, R., Pike, G.B., Sapiro, G.: Mathematical methods for diffusion MRI processing. NeuroImage 45(1), 111–122 (2009)

    Article  Google Scholar 

  5. Gerig, G., Gouttard, S., Corouge, I.: Analysis of brain white matter via fiber tract modeling. In: International Conference on Biomedical and Health Informatics, p. 426 (2004)

    Google Scholar 

  6. O’Donnell, L.J., Wells III, W.M., Golby, A.J., Westin, C.-F.: Unbiased groupwise registration of white matter tractography. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 123–130. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Wang, Q., Yap, P.-T., Jia, H., Wu, G., Shen, D.: Hierarchical fiber clustering based on multi-scale neuroanatomical features. In: Liao, H., Edwards, P.J., Pan, X., Fan, Y., Yang, G.-Z. (eds.) MIAR 2010. LNCS, vol. 6326, pp. 448–456. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Aitchison, J., Shen, S.: Logistic Normal Distributions: Some Properties and Uses. Biometrika 67(2), 261–272 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bouguila, N., Ziou, D., Vaillancourt, J.: Unsupervised learning of a finite mixture model based on the dirichlet distribution and its application. IEEE Transactions on Image Processing 13(11), 1533–1543 (2004)

    Article  Google Scholar 

  10. Neal, R.M.: Markov chain sampling methods for dirichlet process mixture models. Journal of Computational and Graphical Statistics 9(2), 249–265 (2000)

    MathSciNet  Google Scholar 

  11. Aitchison, J., Begg, C.B.: Statistical diagnosis when basic cases are not classified with certainty. Biometrika 63(1), 1–12 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pohl, K.M., Fisher, J.W., Bouix, S., Shenton, M.E., McCarley, R.W., Grimson, W.E.L., Kikinis, R., Wells, W.M.: Using the logarithm of odds to define a vector space on probabilistic atlases. Medical Image Analysis 11(5), 465–477 (2007)

    Article  Google Scholar 

  13. Desikan, R., Segonne, F., Fischl, B., Quinn, B., Dickerson, B., Blacker, D., Buckner, R., Dale, A., Maguire, R., Hyman, B., Albert, M., Killiany, R.: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest. NeuroImage 31(2) (2006)

    Google Scholar 

  14. Cook, P.A., Bai, Y., Gilani, N.S., Seunarine, K.K., Hall, M.G., Parker, G.J., Alexander, D.C.: Camino: Open-Source Diffusion-MRI Reconstruction and Processing. In: Scientific Meeting of the International Society for Magnetic Resonance in Medicine, p. 2759 (2006)

    Google Scholar 

  15. Friman, O., Farneback, G., Westin, C.F.: A bayesian approach for stochastic white matter tractography. IEEE Transactions on Medical Imaging 25(8), 965–978 (2006)

    Article  Google Scholar 

  16. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tunç, B. et al. (2013). Multinomial Probabilistic Fiber Representation for Connectivity Driven Clustering. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics