Skip to main content

Reliable Selection of the Number of Fascicles in Diffusion Images by Estimation of the Generalization Error

  • Conference paper
Information Processing in Medical Imaging (IPMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7917))

Included in the following conference series:

Abstract

A number of diffusion models have been proposed to overcome the limitations of diffusion tensor imaging (DTI) which cannot represent multiple fascicles with heterogeneous orientations at each voxel. Among them, generative models such as multi-tensor models, CHARMED or NODDI represent each fascicle with a parametric model and are of great interest to characterize and compare white matter properties. However, the identification of the appropriate model, and particularly the estimation of the number of fascicles, has proven challenging. In this context, different model selection approaches have been proposed to identify the number of fascicles at each voxel. Most approaches attempt to maximize the quality of fit while penalizing complex models to avoid overfitting. However, the choice of a penalization strategy and the trade-off between penalization and quality of fit are rather arbitrary and produce highly variable results. In this paper, we propose for the first time to determine the number of fascicles at each voxel by assessing the generalization error. This criterion naturally prevents overfitting by comparing how the models predict new data not included in the model estimation. Since the generalization error cannot be directly computed, we propose to estimate it by the 632 bootstrap technique which has low bias and low variance. Results on synthetic phantoms and in vivo data show that our approach performs better than existing techniques, and is robust to the choice of decision threshold. Together with generative models of the diffusion signal, this technique will enable accurate identification of the model complexity at each voxel and accurate assessment of the white matter characteristics.

This work was supported in part by NIH grants R01 RR021885, R01 EB008015, R03 EB008680, R01 LM010033, UL1 RR025758-03 and 1U01NS082320. MT is supported by F.R.S-FNRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexander, D.C., Barker, G.J., Arridge, S.R.: Detection and modeling of non-gaussian apparent diffusion coefficient profiles in human brain data. Magn. Reson. Med. 48(2), 331–340 (2002)

    Article  Google Scholar 

  2. Assaf, Y., Basser, P.J.: Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. NeuroImage 27(1), 48–58 (2005)

    Article  Google Scholar 

  3. Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage 34(1), 144–155 (2007)

    Article  Google Scholar 

  4. Efron, B., Tibshirani, R.: Improvements on cross-validation: The .632 + bootstrap method. Journal of the American Statistical Association 92(438), 548–560 (1997)

    Google Scholar 

  5. Kreher, B., Schneider, J., Mader, I., Martin, E., Hennig, J., Il’yasov, K.: Multitensor approach for analysis and tracking of complex fiber configurations. Magnetic Resonance in Medicine 54(5), 1216–1225 (2005)

    Article  Google Scholar 

  6. Miller, K.L., et al.: Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner. Neuroimage 57(1), 167–181 (2011)

    Article  Google Scholar 

  7. Molinaro, A., Simon, R., Pfeiffer, R.: Prediction error estimation: a comparison of resampling methods. Bioinformatics 21(15), 3301–3307 (2005)

    Article  Google Scholar 

  8. Pasternak, O., Westin, C., Bouix, S., Seidman, L., Goldstein, J., Woo, T., Petryshen, T., Mesholam-Gately, R., McCarley, R., Kikinis, R., et al.: Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset. The Journal of Neuroscience 32(48), 17365–17372 (2012)

    Article  Google Scholar 

  9. Scherrer, B., Warfield, S.K.: Parametric Representation of Multiple White Matter Fascicles from Cube and Sphere Diffusion MRI. PLoS ONE 7(11) (2012)

    Google Scholar 

  10. Schultz, T., Westin, C.-F., Kindlmann, G.: Multi-diffusion-tensor fitting via spherical deconvolution: A unifying framework. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 674–681. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Shao, J.: Linear Model Selection by Cross-Validation. Journal of the American Statistical Association 88(442), 486–494 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. MRM 48(4), 577–582 (2002)

    Article  Google Scholar 

  13. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., Alexander, D.C.: Noddi: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–1016 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scherrer, B., Taquet, M., Warfield, S.K. (2013). Reliable Selection of the Number of Fascicles in Diffusion Images by Estimation of the Generalization Error. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_62

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics