Skip to main content

From Medical Images to Fast Computational Models of Heart Electromechanics: An Integrated Framework towards Clinical Use

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2013)

Abstract

With the recent advances in computational power, realistic modeling of heart function within a clinical environment has come into reach. Yet, current modeling frameworks either lack overall completeness or computational performance, and their integration with clinical imaging and data is still tedious. In this paper, we propose an integrated framework to model heart electromechanics from clinical and imaging data, which is fast enough to be embedded in a clinical setting. More precisely, we introduce data-driven techniques for cardiac anatomy estimation and couple them with an efficient GPU (graphics processing unit) implementation of the orthotropic Holzapfel-Ogden model of myocardium tissue, a GPU implementation of a mono-domain electrophysiology model based on the Lattice-Boltzmann method, and a novel method to correctly capture motion during isovolumetric phases. Benchmark experiments conducted on patient data showed that the computation of a whole heart cycle including electrophysiology and biomechanics with mesh resolutions of around 70k elements takes on average 1min 10s on a standard desktop machine (Intel Xeon 2.4GHz, NVIDIA GeForce GTX 580). We were able to compute electrophysiology up to 40.5× faster and biomechanics up to 15.2× faster than with prior CPU-based approaches, which breaks ground towards model-based therapy planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. MRM 56(2), 411–421 (2006)

    Article  Google Scholar 

  2. Bayer, J., Blake, R., Plank, G., Trayanova, N.: A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. ABME 40, 2243–2254 (2012)

    Google Scholar 

  3. Clayton, R., Bernus, O., Cherry, E., Dierckx, H., Fenton, F., Mirabella, L., Panfilov, A., Sachse, F., Seemann, G., Zhang, H.: Models of cardiac tissue electrophysiology: Progress, challenges and open questions. PBMB 104(1-3), 22 (2011)

    Google Scholar 

  4. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Phil. Trans. R. Soc. A 367(1902), 3445–3475 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kerckhoffs, R., Neal, M., Gu, Q., Bassingthwaighte, J., Omens, J., McCulloch, A.: Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. ABME 35, 1–18 (2007)

    Google Scholar 

  6. Mansi, T.: Image-Based Physiological and Statistical Models of the Heart, Application to Tetralogy of Fallot. Ph.D. thesis, Mines ParisTech (2010)

    Google Scholar 

  7. Marchesseau, S., Heimann, T., Chatelin, S., Willinger, R., Delingette, H.: Fast porous visco-hyperelastic soft tissue model for surgery simulation: Application to liver surgery. PBMB 103, 185–196 (2010)

    Google Scholar 

  8. McMurray, J., et al.: ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. European Heart Journal 33(14), 1787–1847 (2012)

    Article  Google Scholar 

  9. Miller, K., Joldes, G., Lance, D., Wittek, A.: Total lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Communications in Numerical Methods in Engineering 23(2), 121–134 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Moireau, P.: Assimilation de données par filtrage pour les systèmes hyperboliques du second ordre-Applications à la mécanique cardiaque. Ph.D. thesis

    Google Scholar 

  11. Mosegaard, J., Herborg, P., Sorensen, T.: A GPU accelerated spring mass system for surgical simulation. Studies Health Tech. & Inf. 111, 342–348 (2005)

    Google Scholar 

  12. Promayon, E., Baconnier, P., Puech, C.: Physically-Based Deformations Constrained in Displacements and Volume. Computer Graphics Forum 15(3), 155–164 (1996)

    Article  Google Scholar 

  13. Rapaka, S., Mansi, T., Georgescu, B., Pop, M., Wright, G.A., Kamen, A., Comaniciu, D.: LBM-EP: Lattice-boltzmann method for fast cardiac electrophysiology simulation from 3D images. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part II. LNCS, vol. 7511, pp. 33–40. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Sermesant, M., Delingette, H., Ayache, N.: An electromechanical model of the heart for image analysis and simulation. IEEE TMI 25(5), 612–625 (2006)

    Google Scholar 

  15. Taylor, Z., Cheng, M., Ourselin, S.: High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Transactions on Medical Imaging 27(5), 650–663 (2008)

    Article  Google Scholar 

  16. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3 cardiac CT volumes using marginal space learning and steerable features. IEEE TMI 27, 1668–1681 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zettinig, O. et al. (2013). From Medical Images to Fast Computational Models of Heart Electromechanics: An Integrated Framework towards Clinical Use. In: Ourselin, S., Rueckert, D., Smith, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38899-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38899-6_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38898-9

  • Online ISBN: 978-3-642-38899-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics