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Abstract. We present several results about position heaps, a relatively new alternative to suffix
trees and suffix arrays. First, we show that, if we limit the maximum length of patterns to be
sought, then we can also limit the height of the heap and reduce the worst-case cost of insertions
and deletions. Second, we show how to build a position heap in linear time independent of the size
of the alphabet. Third, we show how to augment a position heap such that it supports access to
the corresponding suffix array, and vice versa. Fourth, we introduce a variant of a position heap
that can be simulated efficiently by a compressed suffix array with a linear number of extra bits.

1 Introduction

String-indexing data structure have played a central role in pattern matching at least since
the introduction of suffix trees forty years ago, and their importance has only increased with
the introduction of suffix arrays, compressed suffix arrays, FM-indexes, etc. There are are still
many open problems about them, however, such as how best to make them dynamic. There
are now fairly practical dynamic versions of suffix arrays and FM-indexes but these have poor
worst-case theoretical bounds for updates. Relatively recently, Ehrenfeucht, McConnell, Osheim
and Woo [8] introduced a new and simple indexing data structure, called a position-heap, and
showed how it easily can be made dynamic (albeit with a logarithmic slowdown for searches
and also with a poor worst-case bound for updates). Like suffix trees and suffix arrays, position
heaps take linear space and supports searching in time proportional to the length of the pattern
plus the number number of occurrences reported, which is optimal. Ehrehfeucht et al. gave a
construction algorithm that works in linear time when the size of the alphabet is constant.
Shortly thereafter, Kucherov [10] gave a simpler, online construction that also takes linear time
when the alphabet size is constant. Ehrenfeucht et al.’s and Kucherov’s constructions of position
heaps are analogous to Weiner’s [14] and Ukkonen’s [13] construction of suffix trees, respectively,
and Kucherov asked whether there is a construction that takes linear time independent of
the alphabet size, analogous to Farach’s [9] construction of suffix trees. Kucherov also asked
whether position heaps can be compressed, as can suffix trees, suffix arrays and FM-indexes.
Most recently, Nakashima, I, Inenaga, Bannai and Takeda [11] showed how to build the position
heap for a set of strings given as a trie in linear time when the alphabet size is constant.

In this paper we answer some of the open problems about position heaps. We show in
Section 3 that, if we limit the maximum length of patterns to be sought, then we can use a
position heap with limited height as an index, which reduces the maximum cost of updating the
heap after we make insertions or deletions in the string. In many practical applications we are
interested only in fairly short patterns anyway, so this seems like a reasonable tradeoff. We also
note in that, if we replace a splay tree by an AVL-tree in Ehrenfeucht et al.’s implementation
of dynamic position heaps, then their time bounds become worst-case instead of amortized. In
Section 4 we show how to turn a suffix tree into a position heap in linear time independent of
the alphabet size, using a simple modification of a recent algorithm by Bannai, Inenaga and
Takeda [2] for building the LZ78 parse from a straight-line program. Combined with Farach’s
algorithm for building suffix trees in linear time, this means we can build position heaps in
linear time independent of the alphabet size, answering Kucherov’s first question affirmatively.
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Fig. 1. The position heap Heap for S = abaababbabbab$.

In Section 5 we show how a to augment a position heap with O(n log h) bits such that it supports
O(1)-time access to the corresponding suffix array and inverse suffix array, where n is the length
of the string and h is the height of the heap. Ehrenfeucht et al. showed that, although h can be as
large as n in the worst case, it is typically O(log n). We also show how to augment a compressed
suffix array with O(n log h) bits such that it supports access to the position heap in the same
time needed to access the suffix array and inverse suffix array. Finally, in Section 7 we introduce
a variant of a position heap, which we call a suffix heap, that still supports indexed pattern
matching but which can be simulated by a compressed suffix array with only a linear number
of extra bits. This seems at least partly to answer Kucherov’s second question affirmatively as
well.

2 Position Heaps

Ehrenfeucht et al.’s position heap data structure is a modification of an older data structure by
Coffman and Eve [7] for hashing. Kucherov gave a simplified definition according to which, for
a string S[1..n] terminated by a special symbol S[n] = $, the position heap is the trie Heap in
which

– the root is labelled 0 and the other nodes are labelled 1 to n such that parents’ labels are
greater than their children’s labels;

– for 1 ≤ i ≤ n, the path label of the node labelled i is a prefix of S[i..n];
– for 1 ≤ i ≤ n, the node labelled i stores a pointer (called its maximal-reach pointer) to the

deepest node whose path label is a prefix of S[i..n].

For example, if S = abaababbabbab$ then Heap is as shown in Figure 1 (except that maximal-
reach pointers are omitted there when they point back to the nodes themselves). One reason to
label the root 0 is so that, for 1 ≤ i ≤ n, S[i] is equal to the first edge label on the path from
the root to the node labelled i.

To be able to use Heap for indexed pattern matching in S we store, first, an array of pointers
such that, given i, in O(1) time we can find the node labelled i; and second, a data structure
such that, given i and j, in O(1) time we can determine whether the node labelled i is an
ancestor of the node labelled j. The total space for Heap and these data structures is O(n log n)
bits, i.e., linear space on a word RAM.

To search for a pattern P [1..m] in S, we start at the root and descend to the deepest node v
whose path label is a prefix of P . If the v’s depth d = m, then we report the label of each node
that is either in the subtree of v or on the path from the root to v with a maximal reach pointer
into the subtree of v. Otherwise, we build a list containing the label of each node on the path
from the root to v with a maximal reach pointer to v. We return to the root and descend to the
deepest node v′ whose path label is a prefix of P [d+ 1..m]. If the depth d′ of v′ is m− d, then
we report each label i in our list for which the node labelled i+d is either in the subtree of v′ or
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on the path from the root to v′ with a maximal-reach pointer into the subtree of v′. Otherwise,
we filter our list, keeping each label i only if the node labelled i + d is on the path from the
root to v′ with a maximal reach pointer to v′. We return to the root and descend again, using
d′ in place of d, and keep repeatedly descending until we reach the end of P . By induction, this
yields a list of the starting positions of the occurrences of P in S and, with the data structures
mentioned above, takes time linear in m and the number of those occurrences.

For example, to search for P = aabab in S = abaababbabbab$, we start at the root and
descend along two edges labelled P [1] = P [2] = a to the node v labelled 3. Since v is at depth
only d = 2 ≤ m = 5, we check the nodes labelled 1 and 3 and then, since the former’s maximal-
reach pointer is not to the latter, build a list containing only 3. We return to the root and
descend along edges labelled P [3] = b, P [4] = a and P [5] = b to the node v′ labelled 8. Since v′

is at depth 3 = m− d, we find the node labelled 3 + d = 5 and, since it is on the path from the
root to the v′ and its maximal-reach pointer is into the subtree of v′, we report position 3.

3 Limiting Length and Height

If we will never search for a pattern of length greater than M , then we can easily build a
position heap of height O(M) that works as an index for S. To do this, we make two copies
of S called S′ and S′′; insert a unique character after every 2M characters, counting from
the first character of S′ and the (M + 1)st character of S′′; and build the position heap for
S′ !S′′, where ! is another unique character. We refer to the inserted unique characters and ! as
dividers and to the substrings of S′ and S′′ strictly between dividers as blocks. For example, if
S = abaababbabbab$ and M = 3, then S′ = abaaba #1 bbabba #2 b$, S′′ = ababba #3 bbab$
and we build the position heap for

S′ !S′′ = abaaba #1 bbabba #2 b$ ! ababba #3 bbab$ .

Notice that any substring of S with length at most M occurs in either S′ or S′′ or both.
Moreover, given the endpoints of a substring in S′ !S′′, in O(1) time we can determine whether
it contains any dividers and, if not, where it occurs in S. Therefore, we can use the position
heap for S′ !S′′ as an index for S. The position heap for S′ !S′′ has height at most a factor
of 2 larger than the height of the position heap for S and the dividers guarantee there are no
common prefixes in S longer than 2M , so the position heap for S′ !S′′ has height O(M).

If we insert or delete a substring in S, then we should update S′ and S′′ to maintain the
invariants that every substring of S with length at most M occurs in either S′ or S′′ or both,
and that the position heap for S′ !S′′ has height O(M). Consider first how we update S′ when
we insert a substring of length at most 4M into S. We insert that substring into the appropriate
block of S′; if that block then has length more than 4M , then we split the block into two parts,
each of length between 2M and 4M , and insert a new divider between them. If we insert a a
substring with length greater than 4M into S, then we split that substring into blocks of length
at most 2M separated by dividers, split the block of S′ where the substring is to be inserted
into two parts, concatenate the first part with the first block of the substring and concatenate
the last block of the substring with the second part.

If we delete a substring of S, then we delete any blocks of S′ completely contained in
that substring, then perform separate deletions from the blocks where the substring starts and
finishes. To delete a substring from a single block of S′, we delete that substring and then check
whether the block still has length at least 2M . If not, we remove the divider between that block
and an adjacent one (assuming S is still long enough for there to be another block); if the
resulting block then has length more than 4M , then we split it into two parts, each with length
between 2M and 4M , and insert a new divider between them.
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Once we have updated S′, we update S′′ so that the blocks of S′′ are again centered on
the dividers in S′ and have length exactly 2M (or less if they reach an end of S). Notice that
inserting or deleting a substring of length ` into or from S requires inserting or deleting O(1)
substrings of length O(`) into or from S′ !S′′. For example, if S = abaababbabbab$, M = 3
and we insert bba in position 5 to obtain S = abaabbababbabbab$, then we update S′ to be
abaabbaba #1 bbabba #2 b$ and S′′ to be ababba #3 bbab$.

Ehrenfeucht et al.’s dynamic index has two parts, a dynamic position heap and the data
structure for storing the dynamic string itself. They suggested using a splay tree to store the
dynamic string but noted that this choice gives only amortized time bounds. If we use their
dynamic position heap for S′ !S′′ exactly as they described but use an AVL-tree (which can also
be split and joined in logarithmic time) instead of a splay tree to store S′ !S′′, then we obtain
the following result with no amortization. We will give more details in the full version of this
paper. Our use of dividers makes the alphabet size more than constant but, as we show in the
next Section, it is still possible to build the position heap in linear time.

Theorem 1. If we will never search for a pattern of length greater than M in a dynamic string
S, then we can maintain a position heap that works as an index for S such that

– searching for a pattern of length m ≤M takes O(m log |S|+ occ) time,
– inserting a substring of length ` takes O((M + `)M log(|S|+ `)) time,
– deleting a substring of length ` takes O((M + `)M log |S|) time.

4 Turning a Suffix Tree into a Position Heap

Bannai et al. recently gave an algorithm for computing the LZ78 parse of a string from a
straight-line program for that string. A key idea in their algorithm is to build the LZ78 trie
superimposed on the suffix tree for the string. To compute the LZ78 parse normally, we start
at the left with an empty dictionary; at each step, we take as the next phrase the shortest
prefix of the remainder of the string, that is not yet in the dictionary; we add that phrase to
the dictionary and delete it from the beginning of the remainder of the string. The trie of the
phrases in the dictionary when we finish parsing is the LZ78 trie. If we delete only the first
character of the remainder of the string at each step, instead, then the trie of the phrases when
we finish parsing is the position heap. In this section we use this idea to turn a suffix tree into
a position heap in linear time independent of the alphabet size.

A simple way to build Heap is to build the suffix trie for S (i.e., the trie of all its suffixes);
label each leaf with the starting position of the suffix which is its path label; label the root 0; for
1 ≤ i ≤ n, move each leaf’s label to its highest unlabelled ancestor (or, if there are no unlabelled
ancestors, leave the label on the leaf); and finally, for 1 ≤ i ≤ n, add a maximal-reach pointer
from the node labelled i to the deepest labelled ancestor of the leaf originally labelled i. The
correctness of this algorithm follows from the definition of the position heap. Figure 2 shows
Heap overlaid on the suffix trie for S = abaababbabbab$.

Suppose we already have built and preprocessed the suffix trie of S such that in O(1) time,
first, we can mark nodes; second, given a node, we can find its lowest marked ancestor; and
third, given a node and a depth, we can find that node’s ancestor at that depth. Then we can
perform the algorithm we have just described in linear time independent of the alphabet size,
marking nodes whenever we move a label to them. Since the suffix trie has size Θ(n2), however,
building it explicitly and preprocessing it takes Ω(n2) time.

Bannai et al. showed how we can use the suffix tree ST for S as a representation of the
suffix trie. Suppose we have already built two copies ST 1 and ST 2 of ST with the same nodes.
Westbrook [15] (see also [1]) showed how we can preprocess ST 1 in linear time such that in O(1)
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Fig. 2. The position heap Heap (in heavy lines) overlaid on the suffix trie for S = abaababbabbab$.

amortized time, first, we can mark nodes; second, given a node, we can find its lowest marked
ancestor; and third, we can insert a node in the middle of an edge. Berkman and Vishkin [6]
(see also [5]) showed how we can preprocess ST 2 in linear time such that, given a node and a
depth, we can find that node’s ancestor at that depth in O(1) time. We work in ST 1, which is
dynamic; ST 2 remains static.

We start by labelling with 0 the root of ST 1 and marking it. For 1 ≤ i ≤ n, we find the lowest
marked ancestor u in ST 1 of the leaf w labelled i. (This is the difference between building a
position heap and Bannai et al.’s algorithm for building the LZ78 trie: they consider only values
of i that are the starting positions of phrases in the LZ78 parse.) If u is w itself, then we simply
mark it; otherwise, we find the child v of u that is also an ancestor of w. If u has a constant
number of children then finding v takes O(1) time even in ST 1. If u has more than a constant
number of children then we use ST 2 to find v, as we explain next. If v’s stringdepth (i.e., the
length of its path label) is 1 more than u’s, then we move the label i to v and mark it in ST 1.
Otherwise, we insert a new node v′ between u and v in ST 1; assign the first character of the
edge label of the old edge (u, v) to the new edge (u, v′) and assign the rest to the new edge
(v′, v); move the label i to v′; and mark v′. This all takes O(1) amortized time. Finally, for
1 ≤ i ≤ n, we add a maximal-reach pointer from the node labelled i in ST 1 to the deepest
marked ancestor of the leaf originally labelled i. Figure 3 shows Heap overlaid on the suffix tree
for S = abaababbabbab$. In this case, building Heap requires us to insert into ST 1 the nodes
of the heap labelled 3, 7, 9 and 10.

Notice that, if u has more than one child then, first, u exists in both ST 1 and ST 2 and,
second, we have not inserted any nodes in u’s subtree in ST 1. Therefore, v also exists and is
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Fig. 3. The position heap Heap (in heavy lines) overlaid on the suffix tree for S = abaababbabbab$.

u’s child in both ST 1 and ST 2. We can find v in O(1) time in ST 2 by finding the ancestor of
w whose depth is 1 more than u’s. Summing up, we have the following theorem.

Theorem 2. Given the suffix tree for a string, we can build the position heap for that string in
linear time independent of the size of the alphabet.

Since Farach’s construction of suffix trees takes linear time independent of the alphabet
size, we have answered affirmatively Kucherov’s question of whether there is an algorithm for
building position heaps that takes linear time independent of the alphabet size.

Corollary 1. We can build the position heap for a given string in linear time independent of
the size of the alphabet.

5 Using a Position Heap as a Suffix Array

The order in which we see positions in a traversal of Heap may not be the order in which
they appear from left to right on the leaves of the suffix tree for S, which is the same as
their order in the suffix array SA[1..n] for S. For example, if S = abaababbabbab$ then SA =
[14, 3, 12, 1, 4, 9, 6, 13, 2, 11, 8, 5, 10, 7]; since the node labelled 4 is the child of the node labelled
1 and the parent of the node labelled 12 in Heap, no traversal of Heap can produce the order
12, 1, 4. Nevertheless, by the definition of a position heap, if positions are labels of nodes at the
same depth in Heap, then their left-to-right order is the same as the lexicographic order of the
suffixes starting at those positions and, so, the same as their left-to-right order in the suffix tree
or suffix array for S.
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Let D[1..n] be the array in which D[i] is the depth in Heap of the value SA[i]. In other
words, if D[i] is the rth copy of d in D, then the label of the rth node from the left at depth d in
Heap is SA[i]. For example, if S = abaababbabbab$ then D = [1, 2, 3, 1, 2, 4, 3, 2, 1, 4, 3, 2, 3, 2].
Since D[8] is the third copy of 2 in D, the label on the third node from the left at depth 2 in
Heap is SA[8] = 13, as shown in Figure 1. It follows that, if we can answer access and partial
rank queries on D and access nodes in Heap given their depths and their ranks from the left at
those depths, then we can support access to SA.

We can store D in nH0(D) + o(n(H0(D) + 1)) bits, where H(D) ≤ log h is the 0th-order
empirical entropy of D and h is the height of Heap, such that access and partial rank queries
take O(1) time [4]. Ehrenfeucht et al. showed that, although h can be as large as n in the worst
case, it is typically O(log n). There are (2n + o(n))-bit data structures that support access in
O(1) time to any node in Heap given its rank in pre-order, in-order or post-order traversals;
given a pointer to a node, they also return its rank in the appropriate traversal. Notice that any
of these traversals visits the nodes at any particular depth in Heap in their left-to-right order.
For the sake of simplicity, we now consider only pre-order traversal.

Let E[1..n] be the array in which E[i] is the depth of the (i+ 1)st node (or ith if we ignore
the root) visited in a pre-order traversal of Heap. In other words, if E[i] is the rth copy of d in
E, then the rth node from the left at depth d is the (i + 1)st visited in a pre-order traversal.
For example, if S = abaababbabbab$ then E = [1, 1, 2, 2, 3, 3, 4, 1, 2, 2, 3, 4, 2, 3]. Since E[9] is
the third copy of 2 in E, the third node from the left at depth 2 is the 9th node visited in a
pre-order traversal of Heap. It follows that, if we can answer select queries on E, then we can
access nodes in Heap given their depths and their ranks from the left at those depths.

We can store E in (1+ε)nH0(E)+o(n) bits such that select queries take O(1) time [3], where
ε is any positive constant. Notice that E is a permutation of D so H0(E) = H0(D) ≤ log h.
Therefore, we can add (2 + ε)nH0(D) + o(n(H0(D) + 1)) = O(n log h) bits to Heap and support
access to SA in O(1) time.

The inverse suffix array SA−1[1..n] stores the lexicographic ranks of the suffixes in left-to-
right order. For example, if S = abaababbabbab$ then SA−1 = [4, 9, 2, 5, 12, 7, 14, 11, 6, 13, 10, 3, 8, 1].
Suppose we store data structures supporting access and partial rank queries on E and select
queries on D, which take another (2 + ε)nH0(D) + o(n(H0(D) + 1)) = O(n log h) bits. If we
want to access SA−1[i], then we follow the pointer to the node v labelled i in Heap; find v’s rank
t in the pre-order traversal of Heap; find the partial rank r of E[t− 1] = d in E; and use select
to find the position of the rth copy of d in D. This takes a total of O(1) time. For example, to
access SA−1[13], we find the node labelled 13 in Heap, which is the 10th visited in a pre-order
traversal; find the partial rank 3 of E[9] = 2 in E; and return the position 8 of the third 2 in D.

Theorem 3. We can add O(n log h) bits to a position heap, where h is the height of the heap,
such that it supports access to the corresponding suffix array and inverse suffix array in O(1)
time.

6 Using a Compressed Suffix Array as a Position Heap

Many compressed suffix arrays (see, e.g., [12] for a survey) support efficient access to both SA
and SA−1. Suppose we have access to SA and SA−1 and want to represent a position heap,
including

– its structure as a tree;
– the nodes’ labels;
– the edges’ labels;
– the maximal-reach pointers;
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– an array of pointers such that, given i, in O(1) time we can find the node labelled i;
– a data structure such that, given i and j, in O(1) time we can determine whether the node

labelled i is an ancestor of the node labelled j.

We can represent the heap’s structure as a tree using any of the (2n+ o(n))-bit data structures
mentioned in Section 5; assume we use the one based on pre-order traversal. Without increasing
the size of the data structure by more than o(n) bits, we can support queries to determine
whether one node is the ancestor of another, given pointers to them. We now show that, with
the data structures for access, partial rank and selection on D and E, we can represent the
nodes’ labels and the array of pointers.

To find the label of a given node v, we find v’s rank t in the pre-order traversal of Heap; find
the partial rank r of E[t− 1] = d in E; use select to find the position p of the rth copy of d in
D; and return SA[p]. For example, if S = abaababbabbab$ and we are asked for the label of the
10th node visited in a pre-order traversal of Heap, then we find the partial rank 3 of E[9] = 2;
find the position 8 of the third 2 in D; and return SA[8] = 13.

To find a node given its label i, we find the position SA−1[i] = p in SA of i; find the partial
rank r of D[i] = d in D; find the partial rank t−1 of the rth copy of d in E; and return a pointer
to the t node visited in a pre-order traversal of Heap. For example, if S = abaababbabbab$ and
we are asked to find the node in Heap with label 13, then we find the position SA−1[13] = 8 in
SA of 13; find the partial rank 3 of D[8] = 2; find the partial rank 9 of the 3rd copy of 2 in E;
and return a pointer to the 10th node visited in a pre-order traversal of Heap.

To be able to return edges’ labels, we store a bitvector indicating, for each distinct character
a, the interval of SA containing the positions of copies of a in S. Assuming the size σ of the
alphabet is at most n, this bitvector takes σ log(n/σ) + o(n) = O(n) bits, and lets us determine
in O(1) time the first character S[i] in suffix S[i..n] given S[i..n]’s lexicographic rank among the
suffixes of S. If we are using a compressed suffix array that already supports this functionality,
then we do not need the bitvector.

To find an edge’s label, we find the label i and depth d of the node at the bottom of that
edge, find the position SA−1[i + d − 1] in SA of i + d − 1, then use the bitvector to determine
the character S[i + d − 1]. For example, if S = abaababbabbab$ and we are asked to find the
label of the edge above the node labelled 13, which is at depth 2, then we find the position
SA−1[14] = 1 of 14 in SA and use the bitvector to determine S[14] = $.

To be able to return nodes’ maximal-reach pointers, we store the balanced-parentheses
representation of the tree structure of Heap, with copies of a special symbol ∗ interleaved so
that the ith copy of ∗ occurs after the jth copy of ‘(’ if, in a pre-order traversal of the position
heap overlaid on the suffix trie (see Figure 2) we visit the ith leaf of the trie after we visit the
jth node of the heap; the ith copy of ∗ occurs before the jth copy of ‘)’ if, in a post-order
traversal of the position heap overlaid on the suffix trie, we visit the ith leaf of the trie before
visiting the jth node of the heap. For example, if S = abaababbabbab$ then we store

( ( ∗ ) ( ( ∗ ) ( ( ∗ ) ∗ ∗ ( ( ∗ ) ∗ ) ) ) ( ( ∗ ) ( ∗ ( ( ∗ ) ∗ ∗ ) ) ( ( ∗ ∗ ) ) ) ) .

To clarify this example, we now attach subscripts and superscripts showing the labels of the
nodes of the heap to which parentheses correspond, and superscripts showing the labels of the
leaves of the trie to which copies of ∗ correspond:

(0 (14 ∗14 14) (1 (3 ∗3 3) (4 (12 ∗12 12) ∗1 ∗4 (6 (9 ∗9 9) ∗6 6) 4) 1) . . .

. . . (2 (13 ∗13 13) (5 ∗2 (8 (11 ∗11 11) ∗8 ∗5 8) 5) (7 (10 ∗10 ∗7 10) 7) 2) 0) .

Recall from Section 4 that the maximal-reach pointer of the node labelled i in Heap points
to the deepest node of Heap that, when Heap is overlaid on the suffix trie, is an ancestor of the
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Fig. 4. The suffix heap S -Heap for S = abaababbabbab$.

leaf labelled i in the suffix trie. For example, if S = abaababbabbab$, then the node labelled 5
in Heap points to the node labelled 8 (see Figure 3). It follows that the maximal-reach pointer
of the node labelled i is to the node corresponding to the matching pair of parentheses most
closely enclosing the SA−1[i]th copy of ∗ in our augmented balanced-parentheses representation
of Heap. For example, if S = abaababbabbab$, then the SA−1[5] = 12th copy of ∗ is most
closely enclosed by the matching pair of parentheses corresponding to the 12th node visited in
a pre-order traversal of Heap, which is labelled 8. We can store our augmented representation
in O(n) bits such that find this matching pair of parentheses, and the corresponding node, in
O(1) time. Carefully combining this with all the results in this section, we obtain the following
theorem.

Theorem 4. Suppose we have a compressed suffix array that supports access to both the suffix
array and inverse suffix array in O(t) time, and the corresponding position heap has height h.
Then we can add O(n log h) bits to the compressed suffix array such that it simulates the position
heap with an O(t)-factor slowdown.

7 Suffix Heaps

Suppose we modify the definition of a position heap so that, instead of the path label of the
node labelled i being a prefix of S[i..n], it is a prefix of S[SA[i]..n]. We call the resulting data
structure the suffix heap S -Heap for S. For example, if S = abaababbabbab$ then S -Heap is
as shown in Figure 4 (except that maximal-reach pointers are omitted there when they point
back to the nodes themselves).

Searching in a suffix heap is similar to searching in a standard position heap but now,
instead of reporting a node’s label i, we report SA[i]; instead of computing i + d, we compute
SA−1[SA[i]+d]. Therefore, searching a suffix heap require access to SA and SA−1. For example,
to search for P = aabab in S = abaababbabbab$, we start at the root and descend along the
edge labelled P [1] = a to the node v labelled 2 at depth 1. We return to the root and descend
to along the edges labelled P [2] = a, P [3] = b, P [4] = a and P [5] = b to the node v′ labelled
5. Since SA−1[SA[2] + 1] = 5 is the label of v′, we report position SA[2] = 3. We will give more
examples in the full version of this paper.

We can build a suffix heap using the linear-time algorithm described in Section 4 but first
labelling the leaves of the suffix tree by their ranks from left to right. There is a simpler recursive
algorithm, however, to build the suffix heap from the suffix trie; we can make it linear-time by
simulating the suffix trie with the suffix tree, as before. We start by creating the root of S -Heap;
for each child v of the root of the suffix trie, we call Build(v, 1), where Build(v, c) is the procedure
given in Figure 5. We will prove this algorithm correct and analyze it in the full version of this

9



create a node x
let leaves(v) be the number of leaves in v’s subtree
if c = leaves(v) then return x
let v1, . . . , vt be v’s children
for i := 1..t

if leaves(vi) > c
make Build(vi, c + 1) a child of x
for j := i + 1..t

make Build(vj , 1) a child of x
else

c := c− leaves(vi)
return x

Fig. 5. Pseudocode for the recursive procedure Build(v, c).

paper. If we store trees using their balanced-parentheses representation, then this algorithm
takes O(n) bits of work space.

Notice that nodes’ labels are simply their ranks in a pre-order traversal of S -Heap; therefore,
in a total of 2n+ o(n) bits we can store

– S -Heap’s structure as a tree;

– the nodes’ labels’

– an array of pointers such that, given i, in O(1) time we can find the node labelled i;

– a data structure such that, given i and j, in O(1) time we can determine whether the node
labelled i is an ancestor of the node labelled j.

Suppose we have stored the bitvector described in Section 6 that indicates, for each distinct
character a, the interval of SA containing the positions of copies of a in S. Again, assuming the
size σ of the alphabet is at most n, this bitvector takes O(n) bits and lets us determine in O(1)
time the first character S[i] in suffix S[i..n] given S[i..n]’s lexicographic rank among the suffixes
of S. If we are using a compressed suffix array that already supports this functionality, then we
do not need the bitvector.

To find an edge’s label, we find the label j and depth d of the node at the bottom of
that edge; find the starting position i = SA[j] in S of the lexicographically jth suffix; find the
position SA−1[i+d−1] in SA of SA[j]+d−1; then use the bitvector to determine the character
S[i+d−1]. For example, if S = abaababbabbab$ and we are asked to find the label of the edge
above the node labelled 13, which is at depth 2, then we find the starting position SA[13] = 10
of the lexicographically 13th suffix; find the position SA−1[11] = 10 of 11 in SA; and use the
bitvector to determine S[11] = b.

Suppose the maximal-reach pointer of the node labelled i is to the node labelled j at depth
d. Then

S
[
SA[i]..SA[i] + d− 1

]
= S

[
SA[i+ 1]..SA[i+ 1] + d− 1

]
...

= S
[
SA[j]..SA[j] + d− 1

]
.

It follows that, if the maximal reach pointer of the node labelled i′ > i is to the node labelled j′,
then j′ > j. Therefore, we can store the nodes’ maximal-reach pointers in S -Heap as a balanced-
parentheses representation of the tree structure with copies of a special symbol ∗ interleaved so
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that the ith copy of ∗ occurs after the jth copy of ‘(’ if the maximal-reach pointer of the node
labelled i is to the node labelled j. For example, if S = abaababbabbab$ then we store

(0 (1 ∗1 1) (2 ∗2 (3 ∗3 (4 ∗4 (5 ∗5 5)(6 (7 ∗6 ∗7 7) 6) (8 ∗8 (9 ∗9 (10 ∗10 . . .

. . . (11 (12 ∗11 ∗12 12) 11) 10) 9) (13 (14 ∗13 ∗14 14) 13) 8) 0) ;

again, we have show subscripts and superscripts only to clarify the example. Given a pointer to
the node labelled i, we can find where its maximal-reach pointer points by using a select query
to find the position of the ith copy of ∗, using a rank query to find the number of copies of ‘(’
preceding it, and subtracting 1 for the root. For example, if S = abaababbabbab$ and we want
the maximal-reach pointer of the node labelled 6, then we compute rank(select∗(6)− 1 = 7. We
can store our augmented balanced-parentheses representation in O(n) bits such that rank and
select queries take O(1) time. Carefully combining this with all the results in this section, we
obtain the following theorem.

Theorem 5. Suppose we have a compressed suffix array that supports access to both the suffix
array and inverse suffix array in O(t) time. Then we can add O(n) bits such that it simulates
the corresponding suffix heap with an O(t)-factor slowdown.
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