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Abstract. Many document collections consist largely of repeated ma-
terial, and several indexes have been designed to take advantage of this.
There has been only preliminary work, however, on document retrieval
for repetitive collections. In this paper we show how one of those indexes,
the run-length compressed suffix array (RLCSA), can be extended to
support document listing. In our experiments, our additional structures
on top of the RLCSA can reduce the query time for document listing by
an order of magnitude while still using total space that is only a fraction
of the raw collection size. As a byproduct, we develop a new document
listing technique for general collections that is of independent interest.

1 Introduction

Document listing is a fundamental and well-studied problem in information re-
trieval. It is known how to store a collection of documents in entropy-compressed
space such that, given a pattern, we can quickly list the distinct documents in
which that pattern occurs [15, 8]. If the collection is repetitive, however — e.g.,
genomes of individuals of the same or related species, software repositories, or
versioned document collections — then its statistical entropy may not capture
its true compressibility (the statistical entropy does not decrease if we concate-
nate the same text several times). Several indexes for exact pattern matching [9,
4,2] take good advantage of repetitiveness, but to date there has been no work
on document retrieval in this setting.

In this paper we show how Mékinen et al.’s [9] run-length compressed suffix
array (RLCSA) can be extended to support fast document listing. We present
two different solutions. In Section 3, we show that interleaving the longest com-
mon prefix (LCP) arrays of the individual documents, in the order given by the
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global LCP of the collection, yields long runs of equal values on repetitive collec-
tions, which makes this so-called interleaved LCP (ILCP) array highly compress-
ible. Further, we show that a classical document listing technique [11], designed
for a completely different array, works almost verbatim over the ILCP, and this
yields a new document listing technique of independent interest for generic doc-
ument collections (not only repetitive). In Section 4 we explore the idea, dubbed
PDL, of precomputing the answers of document listing queries for all suffix tree
nodes with enough leaves, and exploiting repetitiveness by grammar-compressing
the resulting sets of answers. In Section 5 we experimentally show that the ILCP
takes very little extra space on top of the RLCSA, and can speed up the RLCSA
when the pattern appears many times in the documents; PDL is an order of
magnitude faster and still uses only a fraction of the original text size.

2 Related Work

The best current solutions for document listing are based on an idea by Muthukr-
ishnan [11]. Let T[1..n] be the concatenation of the collection of d documents sep-
arated by copies of a special character “$”. Muthukrishnan’s solution stores the
suffix tree [18] of T', which in particular includes the suffix array [10] SA[1..n]. The
solution also stores a so-called document array D[1..n] of T, in which each cell
DJi] stores the identifier of the document containing T[SA[é]]; an array C[1..n],
in which each cell C[i] stores the largest value h < i such that D[h] = DJi], or
0 if there is no such value h; and a data structure supporting range-minimum
queries (RMQs) over C, RMQ¢ (4, j) = argmin; <, ;C[k]. These data structures
take a total of O(nlgn) bits. Given a pattern P[l..m], the suffix tree is used
to find the interval SA[{..r] that contains the starting positions of the suffixes
prefixed by P. It follows that every value C[i] < £ in C[{..r] corresponds to a
distinct document in D[i]. Thus a recursive algorithm finding all those positions
i starts with k = RMQc (¢, r). If C[k] > £ it stops. Otherwise it reports document
DIk] and continues recursively with the ranges C[¢,k — 1] and C[k + 1,7] (the
condition C[k] > ¢ always uses the original ¢ value). In total, the algorithm uses
O(m + ndoc) time, where ndoc is the number of documents returned.

Sadakane [15] gave a compressed version of Muthukrishnan’s solution, which
stores only a compressed suffix array CSA of T, a sparse bitvector B[l..n] in-
dicating where in T each document starts, an RMQ data structure for C' that
returns the position of the leftmost minimum in a range without accessing C,
and a bitmap V1..d] to record which document identifiers we have already re-
turned. Fischer [3] showed that such an RMQ data structure takes only 2n+o(n)
bits and can answer queries in O(1) time. These data structures take a total of
|CSA| + 2n + dlg(n/d) + O(d) + o(n) bits. Here dlg(n/d) + O(d) + o(n) bits
are for a sparse bitvector representation (e.g., [13]) of B, which has only d 1s.
This representation answers in constant time query rank(B, %), which gives the
number of 1s in B[1..i]. Now, given P, we use CSA to find ¢ and r, then emulate
Muthukrishnan’s algorithm: After each RMQ giving position k£ we use CSA and
B to compute D[k] = rank(B, CSA[k]), then check the bitmap V to see whether



we have already returned that document. If V[D[k]] = 1, we stop that recursive
branch, else we return D[k], mark V[D[k]] < 1, and continue recursing. In total
we use O(search(m) + ndoc - lookup(n)) time, where search(m) is the time to find
¢ and r and lookup(n) is the time to access a cell of SA, using CSA.

Hon et al. [8] push the space down further by sampling array C. The array is
divided into blocks of length b, and an array C’[1..n/b] stores the minima of the
blocks. The recursive RMQs algorithm is run over C”, so that each position C”[k]
found requires exploring the documents in one block of D, D[(k—1)b+1..kb]. By
setting, say, b = 1g° n for a constant € > 0, the space becomes |CSA|+dlg(n/d)+
O(d) + o(n) bits and the time raises to O(search(m) + ndoc - lookup(n)lg®n).

In a repetitive environment, one can use an RLCSA [9] as the CSA. However,
those 2n + o(n) bits of Sadakane [15], and even the o(n) bits of Hon et al. [8],
are likely to dominate the space requirement.

Another trend to simulate Muthukrishnan’s algorithm is to represent the
document array D[1..n] explicitly using a wavelet tree [7], which uses nlg d+o(n)
bits and can access any D[i], as well as compute rank.(D,7) and select.(D, j),
in time O(lgd). The first query counts the number of times ¢ occurs in D[1..i],
whereas the second gives the position in D of the jth occurrence of c¢. The
wavelet tree root divides values < d/2 and > d/2 in D[l..n], storing only a
bitmap Bl[1..n] where Bli] = 0 iff D[i] < d/2. Then, recursively, the left child of
the root represents the subsequence of D with values < d/2, and the right child
the subsequence with values > d/2. The leaves represent runs of a single value
in [1..d], and the tree has height lg d.

Miékinen and Valimé&ki [17] showed that the wavelet tree of D can also emu-
late array C, as C[i] = select pj; (rank p; (D, i) —1). Then, Gagie et al. [6] showed
that just the CSA and the wavelet tree of D provided document listing in time
O(search(m) 4 ndoclg(n/ndoc)), without using any RMQ structure. Navarro et
al. [12] showed that this wavelet tree is grammar-compressible, as D contains
repeated substrings at almost the same positions of the runs found in SA.

3 Interleaved LCP Array

The longest-common-prefix array LCPg[1..|S]] of a string S is defined such that
LCPg[1] = 0 and, for 2 < i < |S|, LCPg[i] is the length of the longest common
prefix of the lexicographically (i — 1)th and ith suffixes of S, that is, between
S[SAg[i—1]..|S]] and S[SAg[i]..|S|], where SAg is the suffix array of S. We define
the interleaved LCP array of T', ILCP, to be the interleaving of the LCP arrays
of the individual documents according to the document array.

Definition 1. Let T[1,n] = S1-S2-- -S4 be the concatenation of documents S,
D the document array of T', and LCPg; the longest common prefix array of string
S;. Then the interleaved LCP array of T' is defined, for all1 <i <mn, as

|LCP[i] = LCPSDW [rankD[i](DJ)].

The following property of ILCP makes it suitable for document retrieval.



Lemma 1. Let T[1,n] = Sy - S2---Sq be the concatenation of documents S,
SA its suffix array and D its document array. Let SA[(..r] be the interval that
contains the starting positions of suffizes prefized by a pattern P[1..m]. Then the
values strictly less than m in ILCP[(..r] are in the same positions as the leftmost
occurrences in D[(..r] of the distinct document identifiers in that range.

Proof. Let SAg,[¢;..r;] be the interval of all the suffixes of S; starting with
P[1..m]. Then it must hold that LCPg, [(;] < m, as otherwise S;[SA[¢;—1]..SA[(;—
1] +m —1] = S;[SA[¢;]..SA[¢;] +m — 1] = P as well, contradicting the definition
of £;. For the same reason, it holds that LCPg, [¢;+k] > m for all 1 < k < r;—¢;.
Now, let .S; start at position p; +1 in T', where p; = |51 --- Sj_1|. Because each
S; is terminated by the special symbol “$”, the lexicographic ordering between
the suffixes S;[k..] in SAg; is the same as of the corresponding suffixes T'[p; +k..]
in SA. That is, it holds that (SA[i], D[i] = j,1 < i < n) = (p; + SAg,[i],1 <i <
|Sj]). Or, put another way, SA[i] = p; + SAg;[rank;(D, )] whenever D[i] = j.
Now, let f; be the leftmost occurrence of j in D[{..r]. This means that SA[f;]
is the lexicographically first suffix of S; that starts with P. By definition of
¢;, it holds that ¢; = rank;(D, f;). Thus, by definition of ILCP, it holds that
ILCP[f;] = LCPg,[rank;(D, f;)] = LCPs;[¢;] < m, whereas all the other ILCP[k]
values, for £ < k < r, where D[k] = j, must be > m. O

Therefore, for the purposes of document listing, we can replace the C array
by ILCP in Muthukrishnan’s algorithm: instead of recursing until listing all the
positions k such that C[k] < £, we recurse until listing all the positions & such
that ILCP[k] < m.

3.1 Document Listing in General Collections

Under Szpankowski’s very general A2 probabilistic model [16] (which includes
Bernoulli and Markov chains of fixed memory), the maximum LCP value in a
string S is almost surely (a very strong kind of convergence?, which we abbreviate
a.s.) O(1g|S]) [16]. This means that storing ILCP explicitly requires a.s. at most
nlglg(n/d) + O(n) bits, usually far less than the nlgd bits required by C.

The fact that we are interested in the values 0 to m — 1 in ILCP gives a
new relevant index for document listing in general collections. Grossi et al. [7]
proved that, if we give the wavelet tree of a sequence S any shape (i.e., not
necessarily balanced) and represent the wavelet tree bitmaps using a compressed
representation (e.g., [13]), then the total space is the zero-order entropy of the
represented sequence, Hy(.5), plus o(nh) bits, where h is the wavelet tree’s height.
The o(nh) bits can become O(nh/lgn) if we use the bitmap representation of
Patragcu [14] instead. Now consider a representation where the leftmost leaf is at
depth 1, the next 2 leaves are at depth 3, the next 4 leaves are at depth 5, and in
general the 297 th to (2¢ — 1)th leftmost leaves are at depth 2d — 1. Then the ith

2 A sequence X, tends to a value 3 almost surely if, for every e > 0, the proba-
bility that |Xn/B8 — 1| > € for some N > n tends to zero as n tends to infinity,
limy, ;00 SUp N, Pr(|Xn/8 — 1] > €) = 0.



leftmost leaf is at depth O(lg). If we build this wavelet tree on sequence ILCP,
the total space is Ho(ILCP) + O(nlgd/lgn), which is a.s. nlglg(n/d) + O(n).
What is interesting about this shape is that, using the traversal of Gagie et
al. [6] to reach the leaves with values 0 to m — 1, we need only reach m leaves
at depth O(lgm) (i.e., the leftmost m in the wavelet tree), and thus we need to
traverse only O(m) wavelet tree nodes. Array D can be stored in plain form, but
permuted so that it is aligned to the wavelet tree leaves, which allows determining
each distinct document identifier in O(1) time.

Theorem 1. Let T[1..n] = Sy - Sa---Sq be the concatenation of d documents
S; and let | be the mazimum length of a repeated string in any S;. Let CSA
be a compressed suffix array on T that searches for any pattern P[l..m] in
time search(m) > m. Then we can store T in |CSA| + n(lgd + 1gl + O(1))
bits such that the ndoc documents where P[1..m] occurs can be listed in time
O(search(m) 4 ndoc). If T is generated under Szpankowski’s A2 model [16], then
the space is |CSA| +n(lgd + 1glg(n/d) + O(1)) bits.

In particular, if we use the CSA of Belazzougui and Navarro [1], we recover
the optimal time of Muthukrishnan’s solution, using (in most cases) less space.

Corollary 1. Under the conditions of Theorem 1, we can obtain nHy(T) +
o(nHy(T)) + n(lgd + 1gl + O(1)) bits and O(m + ndoc) time, where Hy(T) is
the k-th order empirical entropy of T, for any k < alg,n, o the alphabet size of
T, and 0 < a < 1 any constant.

3.2 Document Listing in Repetitive Collections

Array ILCP has yet another property, which also makes it attractive for repetitive
collections.

Lemma 2. Let S be a string generated under Szpankowski’s A2 model. Let T be
formed by concatenating d copies of S, each terminated with the special symbol
“$”, and then carrying out s edits (symbol insertions, deletions, or substitutions)
at arbitrary positions in T (excluding the ‘$’s). Then, a.s., the ILCP array of T
is formed by p < r+ O(slg(r + s)) runs of equal values, where r = |S|.

Proof. Before applying the edit operations, we have T'= S ---S; and S; = S$
for all j. At this point, ILCP is formed by at most r» + 1 runs of equal values,
since the d equal suffixes S;[SAg, [i]..r + 1] must be contiguous in the suffix array
SA of T, in the area SA[(i — 1)d + 1..id]. Since the values | = LCPg,[i] are also
equal, and ILCP values are the LCPg; values listed in the order of SA, it follows
that ILCP[( — 1)d + 1..id] = [ forms a run, and thus there are r + 1 = n/d runs
in ILCP. Now, if we carry out s edit operations on 7', any S; will be of length
at most 7 + s + 1. Consider an arbitrary edit operation at T'[k]. It changes all
the suffixes T'[k — h..n] for all 0 < h < k. However, since a.s. the string depth
of a leaf in the suffix tree of S is O(lg(r + s)) [16], the suffix will possibly be
moved in SA only for h = O(lg(r + s)). Thus, a.s., only O(lg(r + s)) suffixes are
moved in SA, and possibly the corresponding runs in ILCP are broken. Hence
p<r+0(slg(r+s)) as. O



This proof generalizes Méakinen et al.’s [9] arguments, which hold for uni-
formly distributed strings S. There is also experimental evidence [9] that, in
real-life text collections, a small change to a string usually causes only a small
change to its LCP array. Next we design a document listing data structure whose
size is bound in terms of p.

Let LILCP[1..p] be the array containing the partial sums of the lengths of
the p runs in ILCP, and let VILCP[1..p] be the array containing the values
in those runs. We can store LILCP as a bitvector L[1..n] with p 1s, so that
LILCP[é] = select(L, ). Bitmap L can be stored using a structure by Okanohara
and Sadakane [13] that requires plg(n/p) + O(p) bits and answers select queries
in O(1) time3. For rank it requires O(Ig(n/p)) time, but we can reduce it to
O(lglgn) by building a y-fast trie [19] on every (Ign)th value of LILCP and
completing the query with a binary search using select, adding O(p) bits.

With this representation, it holds that ILCP[:] = VILCP[rank(L,%)]. We can
map from any position i to its run ¢’ = rank(L,%) in time O(lglgn), and from
any run i’ to its starting position in ILCP, i = select(L, '), in constant time.

This is sufficient to emulate Sadakane’s algorithm [15] on a repetitive col-
lection. We will use RLCSA as the CSA. The sparse bitvector B[l..n] marking
the document beginnings in 7" will be represented just like L, so that it requires
dlg(n/d) + O(d) bits and lets us compute any value D[i] = rank(B,SA[i]) in
time O(lglgn + lookup(n)). Finally, we build an RMQ data structure on VILCP,
requiring 2p + o(p) bits and without needing access to VILCP [3].

Assume we have already used RLCSA to find ¢ and r in O(search(m)) time.
Now we compute ¢/ = rank(L, ¢) and ' = rank(L, ), which are the endpoints of
the interval VILCP[¢'..r’"] containing the values in the runs in ILCP[{..7]. Now we
run the recursive RMQs algorithm on VILCP[¢'..r']. Each time we find a minimum
at VILCP[i'], we remap it to the run ILCP[:..j], where i = max(¥, select(L, %)) and
J = min(r, select(L,i4+1)—1). For each i < k < j, we compute D[k] using B and
RLCSA as explained, mark it in V[DI[k]] - 1, and report it. Since we do not have
access to the values in ILCP nor in VILCP, the condition to stop the recursion at
some value ¢’ is that V[D[i]] = 1 is already marked. We show next that this is
correct as long as RMQ returns the leftmost minimum in the range and that we
recurse first to the left and then to the right of each minimum VILCP[#'] found.

Lemma 3. Using the procedure described, we correctly find all the positions £ <
k <r such that ILCP[k] < m.

Proof. Let j = D[k] be the leftmost occurrence of document j in DI{..r]. By
Lemma 1, among all the positions where D[k'] = j in D[{..r], k is the only one
where ILCP[k] < m. Since we find a minimum ILCP value in the range, and then
explore the left subrange before the right subrange, it is not possible to find first
another occurrence D[k'] = j, since it has a larger ILCP value and is to the right
of k. Therefore, when V[D[k]] = 0, that is, the first time we find a D[k] = j,
it must hold ILCP[k] < m, and the same is true for all the other ILCP values
in the run. Hence it is correct to list all those documents and mark them in V.

3 Using a constant-time rank/select data structure for their internal array H.



Conversely, whenever we find a V[D[E']] = 1, the document has already been
reported, thus this is not its leftmost occurrence and then ILCP[k’] > m holds,
as well as for the whole run. Hence it is correct to avoid reporting the whole run
and to stop the recursion in the range, as the minimum value is already > m. 0O

We have thus obtained our first result for repetitive collections:

Theorem 2. Let T' = S; - So---Sq be the concatenation of d documents Sj,
and RLCSA be a suffiz array on T, searching for any pattern P[l..m] in time
search(m) and accessing SA[i] in time lookup(n). Let p be the number of runs

in the ILCP array of T. We can store T in |[RLCSA|+plg(n/p)+O(p)+dlg(n/d)+
O(d) bits such that document listing takes O(search(m) 4+ ndoc - (Iglg n + lookup(n)))
time.

3.3 Document Counting

Finally, array ILCP allows us to efficiently count the number of distinct docu-
ments where P appears, without listing them all. Sadakane [15] showed how to
compute it in constant time adding just 2n + o(n) bits of space. With ILCP we
can obtain a variant that is suitable for repetitive collections.

We represent VILCP using a skewed wavelet tree as in Section 3.1. We can
visit the first m leaves in time O(m). Moreover, the traversal algorithm [6] tells
us how many times each value 0 <1 < m occurs in VILCP[¢'..r"]. More precisely,
we arrive at each leaf [ with an interval [¢], 7] such that VILCP[¢'..r] contains
from the ¢jth to the rjth occurrences of value [ in VILCP[¢'..r']. We store a
reordering of the run lengths so that the runs corresponding to each value [ are
collected left to right in ILCP and stored aligned to the wavelet tree leaf [. Those
are concatenated into another bitmap L’[l..n] with p 1s, similar to L, which
allows us, using select(L’,-), to count the total length spanned by the ¢jth to
rjth runs in leaf [. By adding the areas spanned over the m leaves, we count the
total number of documents where P occurs. Note that we need to correct the
lengths of runs ¢’ and ’, as they may overlap the original interval ILCP[£..7].

Theorem 3. LetT = S;-5--- 5, be the concatenation of d documents S;, and
RLCSA a compressed suffix array on T that searches for any pattern P[1..m] in
time search(m) > m. Let p be the number of runs in the ILCP array of T and l
be the mazimum length of a repeated substring inside any S;. Then we can store
T in |RLCSA|+ p(lgl+21g(n/p)+ O(1)) bits such that the number of documents
where a pattern P[1..m] occurs can be computed in time O(search(m)).

4 Precomputed Document Listing

When the document collection is repetitive, the document array is also repetitive.
Let SA[i..j] be a run in the suffix array, so that there is another area SA[i'..5'],
where SA[i + k] = SA[i’ + k] — 1 for all k < j — 4. Then D[i + k] = D[i’ + k]
for all kK < j — i, except for at most d cells in the entire array D [5]. Navarro



et al. [12] used this repetitiveness in grammar-based compression of the wavelet
tree of D. We can also use it to compress the precomputed answers to document
listing queries covering long intervals of suffixes.

Let v be a suffix tree node. We write SA, to denote the interval of the suffix
array covered by node v, and D, to denote the set of distinct document identifiers
occurring in the same interval of the document array. Given block size b and a
constant 8 > 1, we build a sparse suffix tree that allows us to answer document
listing queries efficiently. For any suffix tree node v, it holds that

1. |SA,| < b, and thus documents can be listed in time O(b - lookup(n)) by
using CSA and bitvector B; or

2. we can compute the set D, as a union of some sets D, ,...,D,, of total
size at most f3 - | D,|, where nodes uq,...,u; are in the sparse suffix tree.

We start by selecting suffix tree nodes v1,...,vr, so that no selected node
is an ancestor of another, and the intervals SA,, of the selected nodes cover the
entire suffix array. Given node v and its parent w, we select v if |[SA,| < b and
[SA,| > b, and store D, with the node. These nodes become the leaves of the
sparse suffix tree, and we assume that they are numbered from left to right. Next
we proceed upward in the suffix tree. Let v be an internal node, uq,...,u; its
children, and w its parent. If the total size of sets Dy, , ..., Dy, is at most 5-|D,],
we remove node v from the tree, and add nodes u1, ..., u; to the children of node
w. Otherwise we keep node v in the sparse suffix tree, and store D, there.

Let v1,...,vr be the leaf nodes and vpy1,...,vp4; the internal nodes of
the sparse suffix tree. We use grammar-based compression to replace frequent
subsets in sets D, ,...,D,,,, with grammar rules expanding to those subsets.
Given a set Z and a grammar rule X — Y, where Y C {1,...,d}, we replace Z
with (ZU{X})\Y,if Y C Z. Aslong as |Y| > 2 for all grammar rules X — Y,
each set D,, can be decompressed in O(|D,,|) time.

When all rules have been applied, we store the reduced sets Dy, ,..., Dy, ;
as an array A of document and rule identifiers. The array takes |A|lg(d + ng)
bits of space, where ng is the total number of rules. We mark the first cell in the
encoding of each set with a 1 in a bitvector B4[l..|]A4|], so that set D, can be
retrieved by decompressing Alselect(By, 1), select(Ba,i + 1) — 1]. The bitvector
takes |A|(1 4 o(1)) bits of space and answers select queries in O(1) time [13].
The grammar rules are stored similarly, in an array G taking |G|lgd bits and
a bitvector Bg[l..|G|] of |G|(1 + o(1)) bits separating the array into rules (note
that right hand sides of rules are formed only by terminals).

In addition to the sets and the grammar, we also have to store the sparse
suffix tree. Bitvector Bp[l..n] marks the first cell of interval SA,, for all leaf
nodes v;, allowing us to convert interval SA[{,r] into a range of nodes [In,rn] =
[rank(Bp,¢),rank(Br,r + 1) — 1]. By using the same bitvector as for LILCP in
Section 3.2, we can store By, in L1g(n/L)+ O(L) bits and answer rank queries in
O(lglgn) time and select queries in constant time. Another bitvector Bp[1..L+I]
of (L 4+ I)(1+ o(1)) bits marks the nodes that are the first children of their
respective parents, supporting rank queries in constant time [13]. Array F of
Il1g I bits stores pointers to parent nodes, so that if node v; is a first child, its




function listDocuments(¢, )
(res,In) < (0, rank(Bg,¥))
if select(By,ln) < ¢:

r’ < min(select(Br,In+ 1) — 1,r)
(res,in) « (list(4,r"),In + 1)

if ' = r: return res
rn <—rank(Bp,r+1) —1
if select(Br,rn+1) <r:

0« select(Br,mn + 1)

res < res U list(¢,r)
return res U decompress(In, rn)

function decompress(¢, r)
(res,i) « (0,0)
while 7 < r:
next < 1+ 1
while Bp[i] = 1:
(7', next’) < parent(i)
if next’ > r + 1: break
(i,next) + (i, next’)
res < res Uset(i)
1 < next
return res

function parent(7)

par < Frank(Br, )]
return (par + L, N|[par])

function set (i)

res <
{ < select(Ba, 1)
r < select(Ba,i+1) —1
for j <+ { to r:
if Alj] < d: res + resU{A[j]}
else: res < res Urule(A[j] — d)
return res

function rule(7)

£ + select(Bg, 1)
r < select(Bg,i+1) — 1
return G[{...r]

function list(¢, r)

res < )
for i + ¢ to r:

res < res U {rank(B, SA[i])}
return res

Fig. 1. Pseudocode for document listing using precomputed answers. Function
listDocuments(¢, ) lists the documents from interval SA[¢, r|; decompress(¢, r) decom-
presses the sets stored in nodes vy, ..., vr; parent(i) returns the parent node and the
leaf node following it for a first child v;; set(i) decompresses the set stored in v;; rule(7)
expands the ith grammar rule; and list(¢, r) lists the documents from interval SA[¢, r]
by using CSA and bitvector B.

parent node is vj, where j = L + F[rank(Bp,1)]. Finally, array N of I'lg L bits
stores a pointer to the leaf node following each internal node.

Figure 1 contains pseudocode for document listing using the precomputed
answers. Function list(¢,r) takes O((r + 1 — £)(Iglgn + lookup(n))) time, set(¢)
takes O(|D,,|) time, and parent(i) takes O(1) time. Function decompress(¥,r)
requires O(|res|) time to decompress the sets. Traversing the tree takes addi-
tional O(h) time per decompressed set, where h is the height of the sparse suffix
tree. As each set contains at least one document, and we may have to list each
document up to S times, this sums to O(Sh - |res|) time in the worst case. Hence
the total time for listDocuments(¢, ) is O(ndoc - Bh + 1glgn), if the answer has
been precomputed, and O(b - (Iglgn + lookup(n))) otherwise.

5 Experiments

We implemented the document listing approaches described in preceding sec-
tions, and measured their performance on two datasets. All experiments were



High Medium Low
Mean [ SD Mean [ SD Mean [ SD
FIWIKI, ndoc 1810.8 | 1369.8 || 602.7 | 654.9 || 327.0 | 556.7
FIWIKI, ratio 32.04 |378.62| 4.26 | 22.72 1.75 2.46
INFLUENZA, ndoc||111021.3|29379.4(/69666.5|19056.8|/46304.3|17082.8
INFLUENZA, ratio|| 1.55 0.26 1.23 0.08 1.11 0.06

Table 1. Means and standard deviations (SD) of ndoc and the ratio -2 for the
pattern sets.

run on an Intel i7 860 2.8 GHz (8192 KB cache), with 16 GB RAM, running
Ubuntu 12.04 and compiling with gce-4.6.3 -03.

Test data. We used two repetitive text collections. FIWIKI is a 400 MB prefix of
Finnish Wikipedia version history. Each version of each Wikipedia article is con-
sidered a separate document, giving 20,433 documents. INFLUENZA is composed
of genomes of the influenza virus, totaling 321.2 MB, and 227,356 documents.

Test patterns. Let occ be the number of times a pattern occurs in the whole col-
lection, and recall ndoc is the number of documents containing the pattern. Doc-
ument listing queries for patterns with similar occ and ndoc are easily handled
by just enumerating all the positions of pattern occurrences (with the RLCSA)
and mapping them to document identifiers. This approach however becomes less
feasible as the separation between occ and ndoc grows, and at some point spe-
cialized document listing approaches become necessary. With this in mind, for
each collection we constructed three sets of patterns as follows. First, we listed
all patterns of length k present, and then ordered the patterns in descending
order by value occ — ndoc, picking specific intervals of this list for testing.

For FIWIKI, the pattern length is 8, and each pattern set contains 20,000
patterns, starting at ranks 1,001, 40,001 and 100,001 of the full list of patterns.
For INFLUENZA, the pattern length is 6, the set size 1000, and starting ranks are
1, 1,001 and 2,001. We call these three sets in both collections the high, medium
and low pattern sets, respectively. Table 1 gives pattern statistics.

Results. Figure 2 shows the space-time tradeoff achieved by our document list-
ing methods. The interleaved LCP array approach (Section 3) is called ilcp, and
values following underscores represent the RLCSA sample rate. The precom-
puted document listing approach (Section 4) is called pdl, and values following
underscores represent block size and the S value.

As a baseline we measured the time for a brute force (brute) approach, which
simply enumerates pattern occurrences with the RLCSA, collecting distinct doc-
uments. This approach adds no space to the index. Like ilcp, brute’s tradeoff
comes from the sample period of the RLCSA.

Our first observation is that the new approaches achieve small space over-
head, particularly on the FIWIKI set. Specifically, the RLCSA with sample period
128 takes 29 MB and 27 MB for the FIWIKI and INFLUENZA collections, respec-
tively (about 7% and 8% of the uncompressed collection sizes). Including such
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Fig. 2. Document listing times and memory required by different document listing
approaches. Bits per character are shown on the x-axis, and time taken to list the
documents on the y-axis (note the logarithmic scale). The time taken to find suffix
array intervals corresponding to each pattern is not included in times shown here.

RLCSA, ilcp took 40 MB and 45 MB (about 10% and 14%). With block size
b =1024 and 8 = 16, pdl took 61 MB and 267 MB (about 15% and 83%).
With respect to query time, pdl significantly outperforms ilcp and brute on
both data sets and is around an order of magnitude faster than the others when
memory is equated. On the other hand ilcp is beaten by brute, except when the
separation between occ and ndoc becomes large (the high FIWIKI pattern set).
Our most important experimental result is that, on the FIWIKI collection, pd|
speeds up document listing by around an order of magnitude over brute while still
using total space that is only a fraction of the uncompressed collection size. We
were unable to compare to more sophisticated document listing techniques [12]
designed for non-highly-repetitive collections because we could not construct
them on our data sets. We leave an extensive comparison for the full paper.

6 Conclusions

We have described two approaches to document listing in highly repetitive col-
lections — using an interleaved LCP array (ilcp) and precomputed document
listing (pdl) — and shown that, on some representative collections, pdl signifi-
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cantly reduces the query time of a brute-force solution, while still using only a
fraction of the space of the uncompressed collection.

Aside from further experimental analysis, there are many directions for future
work. Probably the most interesting one is to apply the ilcp approach over faster
document listing indices, such as the wavelet tree of Theorem 3, which would
yield an interesting space/time tradeoff.
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