Abstract
Lexicographically minimal and lexicographically maximal suffixes of a string are fundamental notions of stringology. It is well known that the lexicographically minimal and maximal suffixes of a given string S can be computed in linear time and space by constructing a suffix tree or a suffix array of S. Here we consider the case when S is a substring of another string T of length n. We propose two linear-space data structures for T which allow to compute the minimal suffix of S in O(log1 + ε n) time (for any fixed ε > 0) and the maximal suffix of S in O(logn) time. Both data structures take O(n) time to construct.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aho, A.V., Ullman, J.D., Hopcroft, J.E.: The design and analysis of computer algorithms. Addison-Wesley, Reading (1974)
Apostolico, A., Crochemore, M.: Fast parallel Lyndon factorization with applications. Theory of Computing Systems 28, 89–108 (1995), 10.1007/BF01191471
Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Panario, D., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)
Crochemore, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: Extracting powers and periods in a string from its runs structure. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 258–269. Springer, Heidelberg (2010)
Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press (1994)
Duval, J.-P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)
Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, New York (1997)
Karhumäki, J., Lifshits, Y., Rytter, W.: Tiling Periodicity. Discrete Mathematics & Theoretical Computer Science 12, 237–248 (2010)
Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-prefix computation in suffix arrays and its applications. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001)
Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Efficient data structures for the factor periodicity problem. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 284–294. Springer, Heidelberg (2012)
Puglisi, S.J., Smyth, W.F., Turpin, A.H.: A taxonomy of suffix array construction algorithms. ACM Comput. Surv. 39(2), 4 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Babenko, M., Kolesnichenko, I., Starikovskaya, T. (2013). On Minimal and Maximal Suffixes of a Substring. In: Fischer, J., Sanders, P. (eds) Combinatorial Pattern Matching. CPM 2013. Lecture Notes in Computer Science, vol 7922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38905-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-38905-4_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38904-7
Online ISBN: 978-3-642-38905-4
eBook Packages: Computer ScienceComputer Science (R0)