Skip to main content

On Minimal and Maximal Suffixes of a Substring

  • Conference paper
Combinatorial Pattern Matching (CPM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7922))

Included in the following conference series:

  • 1153 Accesses

Abstract

Lexicographically minimal and lexicographically maximal suffixes of a string are fundamental notions of stringology. It is well known that the lexicographically minimal and maximal suffixes of a given string S can be computed in linear time and space by constructing a suffix tree or a suffix array of S. Here we consider the case when S is a substring of another string T of length n. We propose two linear-space data structures for T which allow to compute the minimal suffix of S in O(log1 + ε n) time (for any fixed ε > 0) and the maximal suffix of S in O(logn) time. Both data structures take O(n) time to construct.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aho, A.V., Ullman, J.D., Hopcroft, J.E.: The design and analysis of computer algorithms. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  2. Apostolico, A., Crochemore, M.: Fast parallel Lyndon factorization with applications. Theory of Computing Systems 28, 89–108 (1995), 10.1007/BF01191471

    MathSciNet  MATH  Google Scholar 

  3. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Panario, D., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Crochemore, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: Extracting powers and periods in a string from its runs structure. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 258–269. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Crochemore, M., Rytter, W.: Text Algorithms. Oxford University Press (1994)

    Google Scholar 

  6. Duval, J.-P.: Factorizing words over an ordered alphabet. J. Algorithms 4(4), 363–381 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, New York (1997)

    Book  MATH  Google Scholar 

  8. Karhumäki, J., Lifshits, Y., Rytter, W.: Tiling Periodicity. Discrete Mathematics & Theoretical Computer Science 12, 237–248 (2010)

    MathSciNet  Google Scholar 

  9. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-common-prefix computation in suffix arrays and its applications. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Efficient data structures for the factor periodicity problem. In: Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 284–294. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Puglisi, S.J., Smyth, W.F., Turpin, A.H.: A taxonomy of suffix array construction algorithms. ACM Comput. Surv. 39(2), 4 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Babenko, M., Kolesnichenko, I., Starikovskaya, T. (2013). On Minimal and Maximal Suffixes of a Substring. In: Fischer, J., Sanders, P. (eds) Combinatorial Pattern Matching. CPM 2013. Lecture Notes in Computer Science, vol 7922. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38905-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38905-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38904-7

  • Online ISBN: 978-3-642-38905-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics