Abstract
We consider a de’Liguoro-Piperno-style extension of the pure lambda calculus with a non-deterministic choice operator as well as a non-deterministic iterator construct, with the aim of studying its normalization properties. We provide a simple characterization of non-strongly normalizable terms by means of the so called “zoom-in” perpetual reduction strategy. We then show that this characterization implies the strong normalization of the simply typed version of the calculus. As straightforward corollary of these results we obtain a new proof of strong normalization of Gödel’s System T by a simple translation of this latter system into the former.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aschieri, F.: Una caratterizzazione dei lambda termini non fortemente normalizzabili. Master Degree Thesis, Università degli Studi di Verona (2007)
Biasi, C., Aschieri, F.: A Term Assignment for Polarized Bi-Intuitionistic Logic and its Strong Normalization. Fundamenta Informaticae 84(02) (2008)
Dal Lago, U., Zorzi, M.: Probabilistic Operational Semantics for the Lambda Calculus. RAIRO-ITA 46(03), 413–450 (2012), doi:10.1051/ita/2012012
David, R., Nour, K.: A short proof of the strong normalization of the simply typed lambda-mu-calculus. Schedae Informaticae 12, 27–34 (2003)
de’ Liguoro, U., Piperno, A.: Non-Deterministic Extensions of Untyped Lambda-Calculus. Information and Computation 122, 149–177 (1995)
Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press (1989)
Howard, W.A.: Ordinal analysis of terms of finite type. The Journal of Symbolic Logic 45(3), 493–504 (1980)
Gandy, R.O.: Proofs of Strong Normalization. Essays on Combinatoriay Logic, Lambda Calculus and Formalism, pp. 457–477. Academic Press, London (1980)
Khasidashvili, Z., Ogawa, M.: Perpetualilty and Uniform Normalization. In: Hanus, M., Heering, J., Meinke, K. (eds.) ALP 1997 and HOA 1997. LNCS, vol. 1298, pp. 240–255. Springer, Heidelberg (1997)
Kreisel, G.: Interpretation of Analysis by Means of Constructive Functionals of Finite Types. In: Constructivity in Mathematics, pp. 101–128. North-Holland (1959)
Krivine, J.-L.: Lambda-calcul types et modèles, Masson, Paris. Studies in Logic and Foundations of Mathematics, pp. 1–176 (1990)
Krivine, J.-L.: Classical Realizability. In: Interactive Models of Computation and Program Behavior. Panoramas et Synthèses, vol. 27, pp. 197–229. Société Mathématique de France (2009)
Levy, J.-J.: Reductions correctes et optimales dans le lambda-calcul. PhD Thesis, Université Paris 7 (1978)
Joachimski, F., Matthes, R.: Short proofs of normalization for the simply-typed lambda-calculus, permutative conversions and Gödel’s T. Archive of Mathematical Logic 42(1), 49–87 (2003)
Melliès, P.-A.: Description Abstraite des Systèmes de Réécriture. PhD Thesis, Université Paris 7 (1996)
Nederpelt, R.-P.: Strong Normalization in Typed Lambda Calculus with Lambda Structured Types. PhD Thesis, Eindhoven University of Technology (1973)
Prawitz, D.: Ideas and Results in Proof Theory. In: Proceedings of the Second Scandinavian Logic Symposium (1971)
Sanchis, L.-E.: Functionals Defined by Recursion. Notre Dame Journal of Formal Logic VIII(3), 161–174 (1967)
Spector, C.: Provably recursive functionals of analysis: a consistency proof of analysis by an extension of principles in current intuitionistic mathematics. In: Proceedings of Symposia in Pure Mathematics, vol. 5, pp. 1–27. AMS (1962)
van Daalen, D.: The language theory of Automath. PhD Thesis, Eindhoven University of Technology (1977)
van Raamsdonk, F., Severi, P., Sørensen, M.H., Rensen, M.H., Xi, H.: Perpetual Reductions in Lambda-Calculus. Information and Computation 149, 173–225 (1999)
Tait, W.: Infinitely Long Terms of Transfinite Type. Formal Systems and Recursive Functions 40, 176–185 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aschieri, F., Zorzi, M. (2013). Non-determinism, Non-termination and the Strong Normalization of System T. In: Hasegawa, M. (eds) Typed Lambda Calculi and Applications. TLCA 2013. Lecture Notes in Computer Science, vol 7941. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38946-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-38946-7_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38945-0
Online ISBN: 978-3-642-38946-7
eBook Packages: Computer ScienceComputer Science (R0)