Skip to main content

Realizability for Peano Arithmetic with Winning Conditions in HON Games

  • Conference paper
Typed Lambda Calculi and Applications (TLCA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7941))

Included in the following conference series:

Abstract

We build a realizability model for Peano arithmetic based on winning conditions for HON games. First we define a notion of winning strategies on arenas equipped with winning conditions. We prove that the interpretation of a classical proof of a formula is a winning strategy on the arena with winning condition corresponding to the formula. Finally we apply this to Peano arithmetic with relativized quantifications and give the example of witness extraction for \(\Pi^0_2\)-formulas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Troelstra, A.: Chapter VI Realizability. Studies in Logic and the Foundations of Mathematics 137, 407–473 (1998)

    Article  MathSciNet  Google Scholar 

  2. Griffin, T.: A Formulae-as-Types Notion of Control. In: POPL, pp. 47–58. ACM Press (1990)

    Google Scholar 

  3. Krivine, J.L.: Dependent choice, ‘quote’ and the clock. Theor. Comput. Sci. 308(1-3), 259–276 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Krivine, J.L.: Realizability in classical logic. Panoramas et Synthèses 27, 197–229 (2009)

    Google Scholar 

  5. Krivine, J.L.: Typed lambda-calculus in classical Zermelo-Frænkel set theory. Arch. Math. Log. 40(3), 189–205 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hyland, J.M.E., Ong, C.H.L.: On Full Abstraction for PCF: I, II, and III. Inf. Comput. 163(2), 285–408 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nickau, H.: Hereditarily Sequential Functionals. In: Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 253–264. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  8. Laird, J.: Full Abstraction for Functional Languages with Control. In: LICS, pp. 58–67. IEEE (1997)

    Google Scholar 

  9. Abramsky, S., Honda, K., McCusker, G.: A Fully Abstract Game Semantics for General References. In: LICS, pp. 334–344. IEEE (1998)

    Google Scholar 

  10. Clairambault, P.: Least and Greatest Fixpoints in Game Semantics. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 16–31. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Abramsky, S., McCusker, G.: Call-by-Value Games. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 1–17. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Harmer, R.: Games and full abstraction for non-deterministic languages. PhD thesis. Imperial College, London (University of London) (1999)

    Google Scholar 

  13. Selinger, P.: Control categories and duality: on the categorical semantics of the lambda-mu calculus. Mathematical Structures in Computer Science 11(2), 207–260 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Melliès, P.A.: Sequential algorithms and strongly stable functions. Theor. Comput. Sci. 343(1-2), 237–281 (2005)

    Article  MATH  Google Scholar 

  15. Laird, J.: A semantic analysis of control. PhD thesis, University of Edinburgh (1999)

    Google Scholar 

  16. Coquand, T.: A Semantics of Evidence for Classical Arithmetic. J. Symb. Log. 60(1), 325–337 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hyland, J.M.E.: Game semantics. In: Pitts, A.M., Dybjer, P. (eds.) Semantics and Logics of Computation, vol. 14. Cambridge University Press (1997)

    Google Scholar 

  18. Melliès, P.A., Tabareau, N.: Resource modalities in game semantics. In: LICS, pp. 389–398. IEEE (2007)

    Google Scholar 

  19. Berardi, S., Bezem, M., Coquand, T.: On the Computational Content of the Axiom of Choice. J. Symb. Log. 63(2), 600–622 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blot, V. (2013). Realizability for Peano Arithmetic with Winning Conditions in HON Games. In: Hasegawa, M. (eds) Typed Lambda Calculi and Applications. TLCA 2013. Lecture Notes in Computer Science, vol 7941. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38946-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38946-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38945-0

  • Online ISBN: 978-3-642-38946-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics