Abstract
We build a realizability model for Peano arithmetic based on winning conditions for HON games. First we define a notion of winning strategies on arenas equipped with winning conditions. We prove that the interpretation of a classical proof of a formula is a winning strategy on the arena with winning condition corresponding to the formula. Finally we apply this to Peano arithmetic with relativized quantifications and give the example of witness extraction for \(\Pi^0_2\)-formulas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Troelstra, A.: Chapter VI Realizability. Studies in Logic and the Foundations of Mathematics 137, 407–473 (1998)
Griffin, T.: A Formulae-as-Types Notion of Control. In: POPL, pp. 47–58. ACM Press (1990)
Krivine, J.L.: Dependent choice, ‘quote’ and the clock. Theor. Comput. Sci. 308(1-3), 259–276 (2003)
Krivine, J.L.: Realizability in classical logic. Panoramas et Synthèses 27, 197–229 (2009)
Krivine, J.L.: Typed lambda-calculus in classical Zermelo-Frænkel set theory. Arch. Math. Log. 40(3), 189–205 (2001)
Hyland, J.M.E., Ong, C.H.L.: On Full Abstraction for PCF: I, II, and III. Inf. Comput. 163(2), 285–408 (2000)
Nickau, H.: Hereditarily Sequential Functionals. In: Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 253–264. Springer, Heidelberg (1994)
Laird, J.: Full Abstraction for Functional Languages with Control. In: LICS, pp. 58–67. IEEE (1997)
Abramsky, S., Honda, K., McCusker, G.: A Fully Abstract Game Semantics for General References. In: LICS, pp. 334–344. IEEE (1998)
Clairambault, P.: Least and Greatest Fixpoints in Game Semantics. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 16–31. Springer, Heidelberg (2009)
Abramsky, S., McCusker, G.: Call-by-Value Games. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 1–17. Springer, Heidelberg (1998)
Harmer, R.: Games and full abstraction for non-deterministic languages. PhD thesis. Imperial College, London (University of London) (1999)
Selinger, P.: Control categories and duality: on the categorical semantics of the lambda-mu calculus. Mathematical Structures in Computer Science 11(2), 207–260 (2001)
Melliès, P.A.: Sequential algorithms and strongly stable functions. Theor. Comput. Sci. 343(1-2), 237–281 (2005)
Laird, J.: A semantic analysis of control. PhD thesis, University of Edinburgh (1999)
Coquand, T.: A Semantics of Evidence for Classical Arithmetic. J. Symb. Log. 60(1), 325–337 (1995)
Hyland, J.M.E.: Game semantics. In: Pitts, A.M., Dybjer, P. (eds.) Semantics and Logics of Computation, vol. 14. Cambridge University Press (1997)
Melliès, P.A., Tabareau, N.: Resource modalities in game semantics. In: LICS, pp. 389–398. IEEE (2007)
Berardi, S., Bezem, M., Coquand, T.: On the Computational Content of the Axiom of Choice. J. Symb. Log. 63(2), 600–622 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Blot, V. (2013). Realizability for Peano Arithmetic with Winning Conditions in HON Games. In: Hasegawa, M. (eds) Typed Lambda Calculi and Applications. TLCA 2013. Lecture Notes in Computer Science, vol 7941. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38946-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-38946-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38945-0
Online ISBN: 978-3-642-38946-7
eBook Packages: Computer ScienceComputer Science (R0)