Skip to main content

Reversible Circuit Synthesis of Symmetric Functions Using a Simple Regular Structure

  • Conference paper
Reversible Computation (RC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7948))

Included in the following conference series:

Abstract

In this paper, we introduce a new method to realize symmetric functions with reversible circuits. In contrast to earlier methods, our solution deploys a simple and regular cascade structure composed of low-cost gates which enables significant reductions with respect to quantum costs. However, the number of garbage outputs increases slightly. To overcome this, we next propose an optimized design by reusing the garbage outputs. The resulting design thus offers a powerful approach towards reversible synthesis of symmetric Boolean functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature, 46–52 (2001)

    Google Scholar 

  2. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge Univ. Press (2000)

    Google Scholar 

  3. Wille, R., Drechsler, R., Oswald, C., Garcia-Ortiz, A.: Automatic design of low-power encoders using reversible circuit synthesis. In: DATE, pp. 1036–1041 (2012)

    Google Scholar 

  4. Desoete, B., Vos, A.D.: A reversible carry-look-ahead adder using control gates. INTEGRATION, the VLSI Jour. 33(1-2), 89–104 (2002)

    Article  MATH  Google Scholar 

  5. Cuykendall, R., Andersen, D.R.: Reversible optical computing circuits. Optical Letters 12(7), 542–544 (1987)

    Article  Google Scholar 

  6. Thapliyal, H., Srinivas, M.B.: The need of DNA computing: reversible designs of adders and multipliers using fredkin gate. In: Proc. SPIE, Optomechatronic Micro/Nano Devices and Components (2005)

    Google Scholar 

  7. Merkle, R.C.: Reversible electronic logic using switches. Nanotechnology 4, 21–40 (1993)

    Article  Google Scholar 

  8. Agarwal, A., Jha, N.K.: Synthesis of reversible logic. In: DATE, pp. 21384–21385 (2004)

    Google Scholar 

  9. Perkowski, M., Kerntopf, P., Buller, A., Chrzanowska-Jeske, M., Mishchenko, A., Song, X., Al-Rabadi, A., Jozwiak, L., Coppola, A., Massey, B.: Regularity and symmetry as a base for efficient realization of reversible logic circuits. In: IWLS, pp. 245–252 (2001)

    Google Scholar 

  10. Mishchenko, A., Perkowski, M.: Logic synthesis of reversible wave cascades. In: IWLS, pp. 197–202 (2002)

    Google Scholar 

  11. Gupta, P., Agrawal, A., Jha, N.: An algorithm for synthesis of reversible logic circuits. IEEE TCAD 25(11), 2317–2330 (2006)

    Google Scholar 

  12. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE TCAD 22(6), 723–729 (2003)

    Google Scholar 

  13. Maslov, D.: Efficient reversible and quantum implementations of symmetric Boolean functions. IEEE Proc. of the Circuits, Devices and Systems 153(5), 467–472 (2006)

    Article  Google Scholar 

  14. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple control Toffoli network synthesis with SAT techniques. IEEE TCAD 28(5), 703–715 (2009)

    Google Scholar 

  15. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Design Automation Conf., pp. 318–323 (2003)

    Google Scholar 

  16. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: Design Automation Conf., pp. 270–275 (2009)

    Google Scholar 

  17. Rovetta, C., Mouffron, M.: De Bruijan sequences and complexity of symmetric functions. Cryptography and Communications Journal 3(4), 207–225 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yanushekvich, S.N., Butler, J.T., Dueck, G.W., Shmerko, V.P.: Experiments on FPRM expressions for partially symmetric logic functions. In: IEEE International Symposium on Multiple Valued Logic, pp. 141–146 (2000)

    Google Scholar 

  19. Lauradoux, C., Videau, M.: Matriochka symmetric Boolean functions. In: IEEE ISIT, pp. 1631–1635 (2008)

    Google Scholar 

  20. Keren, O., Levin, I., Stankovic, S.R.: Use of gray decoding for implementation of symmetric functions. In: International Conference on VLSI, pp. 25–30 (2007)

    Google Scholar 

  21. Rahaman, H., Das, D.K., Bhattacharya, B.B.: Implementing symmetric functions with hierarchical modules for stuck-at and path-delay fault testability. Journal of Electronic Testing: Theory and Applications 22(2), 125–142 (2006)

    Article  Google Scholar 

  22. Perkowski, M., Kerntopf, P., Buller, A., Chrzanowska-Jeske, M., Mishchenko, A., Song, X., Al-Rabadi, A., Jozwiak, L., Coppola, A., Massey, B.: Regular realization of symmetric functions using reversible logic. In: EUROMICRO Symp. on Digital Systems Design, pp. 245–252 (2001)

    Google Scholar 

  23. Picton, P.: Modified Fredkin gates in logic design. Microelectronics Journal 25, 437–441 (1994)

    Article  Google Scholar 

  24. Moraga, C., Hadjam, F.Z.: On double gates for reversible computing circuits. In: Proc. Intl. Workshop on Boolean Problems (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deb, A., Das, D.K., Rahaman, H., Bhattacharya, B.B., Wille, R., Drechsler, R. (2013). Reversible Circuit Synthesis of Symmetric Functions Using a Simple Regular Structure. In: Dueck, G.W., Miller, D.M. (eds) Reversible Computation. RC 2013. Lecture Notes in Computer Science, vol 7948. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38986-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38986-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38985-6

  • Online ISBN: 978-3-642-38986-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics